The examination of entanglement across various degrees of freedom has been pivotal in augmenting our understanding of fundamental physics, extending to high dimensional quantum states, and promising the scalability of quantum technologies. In this paper, we demonstrate the photon number path entanglement in the frequency domain by implementing a frequency beam splitter that converts the single-photon frequency to another with 50% probability using Bragg scattering four-wave mixing. The two-photon NOON state in a single-mode fiber is generated in the frequency domain, manifesting the two-photon interference with two-fold enhanced resolution compared to that of single-photon interference, showing the outstanding stability of the interferometer.
View Article and Find Full Text PDFAnti-parity-time (APT) symmetry is associated with various effects beyond the fundamental limitations implied in the standard Hermitian-Hamiltonian dynamics. Here, we create an optical APT-symmetric system in a synthetic frequency domain using a conventional fiber without intrinsic gain or loss and experimentally reveal photonic APT-symmetric effects, including energy-difference conservation and synchronized power oscillation, which have not yet been confirmed experimentally in the optical domain. The optical fiber-based APT-symmetric system has a long interaction length because of its negligible loss, and the APT-symmetric Hamiltonian is precisely tunable with optical pumping density and phase mismatch.
View Article and Find Full Text PDF