Publications by authors named "Sear M"

We present a new technique for investigating complex model electrocatalysts by means of electrochemical ambient-pressure X-ray photoelectron spectroscopy (AP-XPS). Using a specially designed miniature capillary device, we prepared a three-electrode electrochemical cell in a thin-layer configuration and analyzed the active electrode/electrolyte interface by using "tender" X-ray synchrotron radiation. We demonstrate the potential of this versatile method by investigating a complex model electrocatalyst.

View Article and Find Full Text PDF

The spatial distribution and concentration of lanthanide activator and sensitizer dopant ions are of key importance for the luminescence color and efficiency of upconverting nanoparticles (UCNPs). Quantifying dopant ion distributions and intermixing, and correlating them with synthesis methods require suitable analytical techniques. Here, X-ray photoelectron spectroscopy depth-profiling with tender X-rays (2000-6000 eV), providing probe depths ideally matched to UCNP sizes, is used to measure the depth-dependent concentration ratios of Er to Yb , [Er ]/[Yb ], in three types of UCNPs prepared using different reagents and synthesis methods.

View Article and Find Full Text PDF

An ordered germanium terminated (1 0 0) diamond surface has been formed and characterised using a combination of low energy electron diffraction and synchrotron-based core level photoemission spectroscopy. A number of preparation methods are explored, in each case inducing a two domain [Formula: see text] surface reconstruction. The surface becomes saturated with bonded germanium such that each [Formula: see text] unit cell hosts 1.

View Article and Find Full Text PDF

The oxidation of the silicon terminated (1 0 0) diamond surface is investigated with a combination of high resolution photoelectron spectroscopy, low energy electron diffraction and near edge x-ray absorption fine structure spectroscopy. The effects of molecular [Formula: see text] and [Formula: see text] dosing under UHV conditions, as well as exposure to ambient conditions, have been explored. Our findings indicate that the choice of oxidant has little influence over the resulting surface chemistry, and we attribute approximately 85% of the surface oxygen to a peroxide-bridging arrangement.

View Article and Find Full Text PDF

A combination of synchrotron-based x-ray spectroscopy and contact potential difference measurements have been used to examine the electronic structure of the (3 × 1) silicon terminated (100) diamond surface under ultra high vacuum conditions. An occupied surface state which sits 1.75 eV below the valence band maximum has been identified, and indications of mid-gap unoccupied surface states have been found.

View Article and Find Full Text PDF

Physical therapists require an accurate, reliable method for measuring muscle strength. They often use manual muscle testing or hand-held dynametric muscle testing (DMT), but few studies document the reliability of MMT or compare the reliability of the two types of testing. We designed this study to determine the intrarater reliability of MMT and DMT.

View Article and Find Full Text PDF