Publications by authors named "Sear D"

Resilience, which can also be described as absorbing capacity, describes the amount of change that a system can undergo in response to disturbance and maintain a characteristic, self-sustaining regime of functions, processes, or sets of feedback loops. Rivers exhibit varying levels of resilience, but the net effect of industrialized anthropogenic alteration has been to suppress river resilience. As changing climate alters the inputs to rivers and human modification alters the morphology and connectivity of rivers, restoration increasingly considers how to enhance resilience.

View Article and Find Full Text PDF

The increasing similarity of plant species composition among distinct areas is leading to the homogenization of ecosystems globally. Human actions such as ecosystem modification, the introduction of non-native plant species and the extinction or extirpation of endemic and native plant species are considered the main drivers of this trend. However, little is known about when floristic homogenization began or about pre-human patterns of floristic similarity.

View Article and Find Full Text PDF

Residents of carceral facilities are exposed to poor ventilation conditions which leads to the spread of communicable diseases such as COVID-19. Indoor ventilation conditions are rarely studied within carceral settings and there remains limited capacity to develop solutions to address the impact of poor ventilation on the health of people who are incarcerated. In this study, we empirically measured ventilation rates within housing units of six adult prisons in the California Department of Corrections and Rehabilitation (CDCR) and compare the measured ventilation rates to recommended standards issued by the World Health Organization (WHO).

View Article and Find Full Text PDF

The timing of human colonization of East Polynesia, a vast area lying between Hawai'i, Rapa Nui, and New Zealand, is much debated and the underlying causes of this great migration have been enigmatic. Our study generates evidence for human dispersal into eastern Polynesia from islands to the west from around AD 900 and contemporaneous paleoclimate data from the likely source region. Lake cores from Atiu, Southern Cook Islands (SCIs) register evidence of pig and/or human occupation on a virgin landscape at this time, followed by changes in lake carbon around AD 1000 and significant anthropogenic disturbance from c.

View Article and Find Full Text PDF

The time-averaged and instantaneous flow velocity structures of flood waters are not well understood for irregular surfaces such as are created by the presence of roots and fallen branches on forested floodplains. Natural flow structures commonly depart systematically from those described for idealised roughness elements, and an important knowledge gap exists surrounding the effects of natural flow structures on vertical exchanges of fluid and momentum. An improved understanding of the flow structure is required to model flows over forested floodplains more accurately, and to distinguish their dynamics from non-vegetated floodplains or indeed floodplains with other vegetation types, such as reed or grass.

View Article and Find Full Text PDF

Oxygen supply to the salmonid egg surface can be limited by external factors such as sedimentation and groundwater upwelling, while the egg membrane itself can impede diffusion from the egg surface to the embryo. Therefore, the structure of egg membranes could affect the rate at which embryos obtain oxygen from their surroundings. Published field data indicate that oxygen stress experienced by salmonid eggs can vary widely among populations.

View Article and Find Full Text PDF

Small, 1st and 2nd-order, headwater streams and ponds play essential roles in providing natural flood control, trapping sediments and contaminants, retaining nutrients, and maintaining biological diversity, which extend into downstream reaches, lakes and estuaries. However, the large geographic extent and high connectivity of these small water bodies with the surrounding terrestrial ecosystem makes them particularly vulnerable to growing land-use pressures and environmental change. The greatest pressure on the physical processes in these waters has been their extension and modification for agricultural and forestry drainage, resulting in highly modified discharge and temperature regimes that have implications for flood and drought control further downstream.

View Article and Find Full Text PDF

Oxygen demand in river substrates providing important habitats for the early life stages of aquatic ecology, including lithophilous fish, can arise due to the oxidation of sediment-associated organic matter. Oxygen depletion associated with this component of river biogeochemical cycling, will, in part, depend on the sources of such material. A reconnaissance survey was therefore undertaken to assess the relative contributions from bed sediment-associated organic matter sources potentially impacting on the River Axe Special Area of Conservation (SAC), in SW England.

View Article and Find Full Text PDF

Flooding is a very costly natural hazard in the UK and is expected to increase further under future climate change scenarios. Flood defences are commonly deployed to protect communities and property from flooding, but in recent years flood management policy has looked towards solutions that seek to mitigate flood risk at flood-prone sites through targeted interventions throughout the catchment, sometimes using techniques which involve working with natural processes. This paper describes a project to provide a succinct summary of the natural science evidence base concerning the effectiveness of catchment-based 'natural' flood management in the UK.

View Article and Find Full Text PDF

Excessive sediment pressure on aquatic habitats is of global concern. A unique dataset, comprising instantaneous measurements of deposited fine sediment in 230 agricultural streams across England and Wales, was analysed in relation to 20 potential explanatory catchment and channel variables. The most effective explanatory variable for the amount of deposited sediment was found to be stream power, calculated for bankfull flow and used to index the capacity of the stream to transport sediment.

View Article and Find Full Text PDF

Fine sediments are known to be an important cause of increased mortality in benthic spawning fish. To date, most of the research has focussed on the relationship between embryo mortality and the quantity of fine sediment accumulated in the egg pocket. However, recent evidence suggests a) that the source of fine sediment might also be important, and b) that fitness of surviving embryos post-hatch might also be impacted by the accumulation of fine sediments.

View Article and Find Full Text PDF

The ingress of particulate material into freshwater spawning substrates is thought to be contributing to the declining success of salmonids reported over recent years for many rivers. Accordingly, the need for reliable information on the key sources of the sediment problem has progressed up the management agenda. Whilst previous work has focussed on apportioning the sources of minerogenic fine sediment degrading spawning habitats, there remains a need to develop procedures for generating corresponding information for the potentially harmful sediment-bound organic matter that represents an overlooked component of interstitial sediment.

View Article and Find Full Text PDF

This paper draws on results from a recent research programme on the impact of fine sediment transport through catchments to present a case for the development of new approaches to improving the quality of salmonid spawning and incubation habitats. To aid the development of these programmes, this paper summarises the mechanisms by which fine sediment accumulation influences the availability of oxygen (O2) to incubating salmon embryos. The results of the investigation indicate that incubation success is inhibited by: (i) the impact of fine sediment accumulation on gravel permeability and, subsequently, the rate of passage of oxygenated water through the incubation environment; (ii) reduced intragravel O2 concentrations that occur when O2 consuming material infiltrates spawning and incubation gravels; and (iii) the impact of fine particles (clay) on the exchange of O2 across the egg membrane.

View Article and Find Full Text PDF

Rivers integrate the impacts of change in atmospheric and terrestrial systems; they then deliver these to the coast. En route geomorphological processes create dynamic and diverse habitats, both in-stream and in riparian/floodplain ecotones. The dynamics of channel change conflict with human resource development, the outcome is that many river and riparian environments have been significantly modified, complicating the interpretation of change.

View Article and Find Full Text PDF