Publications by authors named "Sean-Bong Lee"

Desmoplastic Small Round Cell Tumor (DSRCT) is a rare and aggressive malignant cancer caused by a chromosomal translocation t(11;22)(p13;q12) that produces an oncogenic transcription factor, EWSR1-WT1. EWSR1-WT1 is essential for the initiation and progression of DSRCT. However, the precise mechanism by which EWSR1-WT1 drives DSRCT oncogenesis remains unresolved.

View Article and Find Full Text PDF

Purpose: Desmoplastic small round cell tumor (DSRCT) is a highly lethal intra-abdominal sarcoma of adolescents and young adults. DSRCT harbors a t(11;22)(p13:q12) that generates the EWSR1-WT1 chimeric transcription factor, the key oncogenic driver of DSRCT. EWSR1-WT1 rewires global gene expression networks and activates aberrant expression of targets that together mediate oncogenesis.

View Article and Find Full Text PDF

Ewing's sarcoma (EWS) is a bone cancer arising predominantly in young children. EWSR1 (Ewing Sarcoma breakpoint region 1/EWS RNA binding protein 1) gene is ubiquitously expressed in most cell types, indicating it has diverse roles in various cellular processes and organ development. Recently, several studies have shown that missense mutations of EWSR1 genes are known to be associated with central nervous system disorders such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD).

View Article and Find Full Text PDF

A recent study reveals that missense mutations of are associated with neurodegenerative disorders such as amyotrophic lateral sclerosis, but the function of wild-type (WT) EWSR1 in the central nervous system (CNS) is not known yet. Herein, we investigated the neuroanatomical and motor function changes in knock out (KO) mice. First, we quantified neuronal nucleus size in the motor cortex, dorsal striatum and hippocampus of three different groups: WT, heterozygous KO (+/-), and homozygous KO (-/-) mice.

View Article and Find Full Text PDF

Background: Multifunctional transcription factor (TF) gene EWS/EWSR1 is involved in various cellular processes such as transcription regulation, noncoding RNA regulation, splicing regulation, genotoxic stress response, and cancer generation. Role of a TF gene can be effectively studied by measuring genome-wide gene expression, i.e.

View Article and Find Full Text PDF

Brown adipocytes are a specialized cell type that is critical for adaptive thermogenesis, energy homeostasis, and metabolism. In response to cold, both classical brown fat and the newly identified "beige" or "brite" cells are activated by β-adrenergic signaling and catabolize stored lipids and carbohydrates to produce heat via UCP1. Once thought to be non-existent in adults, recent studies have discovered active classical brown and beige fat cells in humans, thus reinvigorating interest in brown and beige adipocytes.

View Article and Find Full Text PDF

The EWSR1 (EWS RNA-binding protein 1/Ewing Sarcoma Break Point Region 1) gene encodes a RNA/DNA binding protein that is ubiquitously expressed and involved in various cellular processes. EWSR1 deficiency leads to impairment of development and accelerated senescence but the mechanism is not known. Herein, we found that EWSR1 modulates the Uvrag (UV radiation resistance associated) gene at the post-transcription level.

View Article and Find Full Text PDF

EWS (Ewing sarcoma) encodes an RNA/ssDNA binding protein that is frequently rearranged in a number of different cancers by chromosomal translocations. Physiologically, EWS has diverse and essential roles in various organ development and cellular processes. In this study, we uncovered a new role of EWS in mitochondrial homeostasis and energy metabolism.

View Article and Find Full Text PDF

Objective: White adipose tissue is important for mammalian energy homeostasis and metabolism. It was previously demonstrated that Ewing sarcoma gene (EWS) is essential for early classical brown fat lineage determination, but its role in white adipocyte differentiation is not known.

Methods: Mouse embryonic fibroblasts (MEFs) lacking Ews and shRNA-mediated silencing of Ews in 3T3L1 preadipocytes were used to investigate the role of EWS in adipogenesis.

View Article and Find Full Text PDF

The oncogenic fusion gene EWS-WT1 is the defining chromosomal translocation in desmoplastic small round-cell tumors (DSRCT), a rare but aggressive soft tissue sarcoma with a high rate of mortality. EWS-WT1 functions as an aberrant transcription factor that drives tumorigenesis, but the mechanistic basis for its pathogenic activity is not well understood. To address this question, we created a transgenic mouse strain that permits physiologic expression of EWS-WT1 under the native murine Ews promoter.

View Article and Find Full Text PDF

Ras association domain family protein 1A (RASSF1A) is a tumor suppressor gene silenced in cancer. Here we report that RASSF1A is a novel regulator of intestinal inflammation as Rassf1a(+/-) , Rassf1a(-/-) and an intestinal epithelial cell specific knockout mouse (Rassf1a (IEC-KO) ) rapidly became sick following dextran sulphate sodium (DSS) administration, a chemical inducer of colitis. Rassf1a knockout mice displayed clinical symptoms of inflammatory bowel disease including: increased intestinal permeability, enhanced cytokine/chemokine production, elevated nuclear factor of kappa light polypeptide gene enhancer in B-cells (NFκB) activity, elevated colonic cell death and epithelial cell injury.

View Article and Find Full Text PDF

The recent surge in obesity has provided an impetus to better understand the mechanisms of adipogenesis, particularly in brown adipose tissue (BAT) because of its potential utilization for antiobesity therapy. Postnatal brown adipocytes arise from early muscle progenitors, but how brown fat lineage is determined is not completely understood. Here, we show that a multifunctional protein, Ewing Sarcoma (EWS), is essential for determining brown fat lineage during development.

View Article and Find Full Text PDF

Metastasis is the primary cause of death in cancer patients. CXCR4/CXCL12 chemokine axis provides directional cues for breast cancer cells to metastasize to specific organs. Despite their potential clinical importance, how CXCR4 expression in breast cancer cells is regulated at the molecular level is not well understood.

View Article and Find Full Text PDF

Hematopoietic stem progenitor cells (HSPCs) are present in very small numbers in the circulating blood in steady-state conditions. In response to stress or injury, HSPCs are primed to migrate out of their niche to peripheral blood. Mobilized HSPCs are now commonly used as stem cell sources due to faster engraftment and reduced risk of posttransplant infection.

View Article and Find Full Text PDF

The Ras effector NORE1 is frequently silenced in primary adenocarcinomas, although the significance of this silencing for tumorigenesis is unclear. Here we show that NORE1 induces polyubiquitination and proteasomal degradation of oncoprotein HIPK1 by facilitating its interaction with the Mdm2 E3 ubiquitin ligase. Endogenous HIPK1 is stabilized in Nore1-deficient mouse embryonic fibroblasts, and depletion of HIPK1 in NORE1-silenced lung adenocarcinoma cells inhibits anchorage-independent cell growth and tumour formation in nude mice.

View Article and Find Full Text PDF

Here, we demonstrate that troglitazone (Rezulin), a peroxisome proliferator-activated receptor agonist, acted in synergy with heregulin to induce massive cell death in breast cancer cells. Although the combination of heregulin and troglitazone (HRG/TGZ) induced both apoptosis and necrosis, the main mode of cell death was caspase-independent and occurred via necrosis. This combination increased generation of superoxide in mitochondria, which in turn destabilized mitochondria potential.

View Article and Find Full Text PDF

The longevity of organisms is maintained by stem cells. If an organism loses the ability to maintain a balance between quiescence and differentiation in the stem/progenitor cell compartment due to aging and/or stress, this may result in death or age-associated diseases, including cancer. Ewing sarcoma is the most lethal bone tumor in young patients and arises from primitive stem cells.

View Article and Find Full Text PDF

Epigenetic silencing of RASSF (Ras association domain family) genes RASSF1 and RASSF5 (also called NORE1) by CpG hypermethylation is found frequently in many cancers. Although the physiological roles of RASSF1 have been studied in some detail, the exact functions of RASSF5 are not well understood. Here, we show that RASSF5 plays an important role in mediating apoptosis in response to death receptor ligands, TNF-α and TNF-related apoptosis-inducing ligand.

View Article and Find Full Text PDF

Background And Aims: The underlying molecular mechanisms of hepatocellular carcinoma (HCC) remain poorly understood due to its complex development process. The human T cell-specific transcription factor sex-determining region Y-related high-mobility group (HMG) box 4 (SOX4) has been linked to development and tumorigenesis. In this study, we characterized the roles of SOX4 in regulation of the p53 transcription activity and evaluated the expression patterns and prognostic value of the transcription factor SOX4 in HCC.

View Article and Find Full Text PDF
Article Synopsis
  • Mammalian kidney development relies on the WT1 gene and WNT/beta-catenin signaling, with WT1 inhibiting the latter through unknown mechanisms.
  • A new gene called WID (WT1-induced Inhibitor of Dishevelled) has been identified as a target of WT1 that negatively regulates WNT/beta-catenin signaling.
  • WID interacts with Dishevelled to inhibit WNT signaling and is essential for proper kidney development, as shown by experiments in zebrafish embryos.
View Article and Find Full Text PDF

EWS/FLI1 is a fusion gene product generated by a chromosomal translocation t(11;22)(q24;q12) found in Ewing sarcoma. EWS/FLI1 encodes an aberrant transcription factor with oncogenic properties in vitro. Paradoxically, expression of EWS/FLI1 in nontransformed primary cells results in apoptosis, but the exact mechanism remains unclear.

View Article and Find Full Text PDF

Background: The Ste-20 family kinase Hippo restricts cell proliferation and promotes apoptosis for proper organ development in Drosophila. In C. elegans, Hippo homolog also regulates longevity.

View Article and Find Full Text PDF

Wilms' tumour (WT) is a pediatric tumor of the kidney that arises via failure of the fetal developmental program. The absence of identifiable mutations in the majority of WTs suggests the frequent involvement of epigenetic aberrations in WT. We therefore conducted a genome-wide analysis of promoter hypermethylation in WTs and identified hypermethylation at chromosome 5q31 spanning 800 kilobases (kb) and more than 50 genes.

View Article and Find Full Text PDF

Background: Desmoplastic Small Round Cell Tumor (DSRCT) is a highly aggressive malignancy that affects mainly adolescents and young adults. A defining characteristic of DSRCT is a specific chromosomal translocation, t(11;22)(p13;q12), that fuses EWS with WT1, leading to a production of two isoforms of chimeric transcription factor, EWS/WT1(-KTS) and EWS/WT1(+KTS). The chimeric proteins are thought to play critical roles in various stages of oncogenesis through aberrant transcription of different genes, but only a few of these genes have been identified.

View Article and Find Full Text PDF