Conspecuts Commercial and emerging renewable energy technologies are underpinned by precious metal catalysts, which enable the transformation of reactants into useful products. However, the noble metals (NMs) comprise the least abundant elements in the lithosphere, making them prohibitively scarce and expensive for future global-scale technologies. As such, intense research efforts have been devoted to eliminating or substantially reducing the loadings of NMs in various catalytic applications.
View Article and Find Full Text PDFNoble metal-coated core-shell nanoparticles have been applied to a suite of catalytic applications, with the aim of decreasing the noble metal loading while ideally improving their performance. The chemistry and therefore activity at the surface of these materials are intimately related to the accurate description of the core-shell interface. Using density functional theory, we developed a procedure to obtain realistic surface topology descriptions at the heterometallic junction.
View Article and Find Full Text PDFElectrocatalytic hydrogenation (ECH) is a sustainable pathway for the synthesis of value-added organic compounds, provided affordable catalysts with high activity, selectivity and durability are developed. Here, we synthesize Cu/C, Ni/C, and CuNi/C nanoparticles and compare their performance to Pt/C, Ru/C, PtRu/C for the ECH of hydroxyacetone, a bio-derived feedstock surrogate containing a carbonyl and a hydroxyl functional group. The non-precious metal electrocatalysts show promising conversion-time behavior, product selectivities, and Faradaic efficiencies.
View Article and Find Full Text PDFWe demonstrated the self-assembly of transition metal carbide nanoparticles coated with atomically thin noble metal monolayers by carburizing mixtures of noble metal salts and transition metal oxides encapsulated in removable silica templates. This approach allows for control of the final core-shell architecture, including particle size, monolayer coverage, and heterometallic composition. Carbon-supported Ti(0.
View Article and Find Full Text PDFA reverse microemulsion is used to encapsulate monometallic or bimetallic early transition metal oxide nanoparticles in microporous silica shells. The silica-encapsulated metal oxide nanoparticles are then carburized in a methane/hydrogen atmosphere at temperatures over 800 °C to form silica-encapsulated early transition metal carbide nanoparticles. During the carburization process, the silica shells prevent the sintering of adjacent carbide nanoparticles while also preventing the deposition of excess surface carbon.
View Article and Find Full Text PDFTransition-metal carbides (TMCs) exhibit catalytic activities similar to platinum group metals (PGMs), yet TMCs are orders of magnitude more abundant and less expensive. However, current TMC synthesis methods lead to sintering, support degradation, and surface impurity deposition, ultimately precluding their wide-scale use as catalysts. A method is presented for the production of metal-terminated TMC nanoparticles in the 1-4 nm range with tunable size, composition, and crystal phase.
View Article and Find Full Text PDFCarbohydrate epimerization is an essential technology for the widespread production of rare sugars. In contrast to other enzymes, most epimerases are only active on sugars substituted with phosphate or nucleotide groups, thus drastically restricting their use. Here we show that Sn-Beta zeolite in the presence of sodium tetraborate catalyses the selective epimerization of aldoses in aqueous media.
View Article and Find Full Text PDFThis work explores the opportunity to substantially reduce the cost of hydrogen evolution reaction (HER) catalysts by supporting monolayer (ML) amounts of precious metals on transition metal carbide substrates. The metal component includes platinum (Pt), palladium (Pd), and gold (Au); the low-cost carbide substrate includes tungsten carbides (WC and W(2)C) and molybdenum carbide (Mo(2)C). As a platform for these studies, single-phase carbide thin films with well-characterized surfaces have been synthesized, allowing for a direct comparison of the intrinsic HER activity of bare and Pt-modified carbide surfaces.
View Article and Find Full Text PDF