Publications by authors named "Sean Seaver"

Neutron crystallography provides direct visual evidence of the atomic positions of deuterium-exchanged H atoms, enabling the accurate determination of the protonation/deuteration state of hydrated biomolecules. Comparison of two neutron structures of hemoglobins, human deoxyhemoglobin (T state) and equine cyanomethemoglobin (R state), offers a direct observation of histidine residues that are likely to contribute to the Bohr effect. Previous studies have shown that the T-state N-terminal and C-terminal salt bridges appear to have a partial instead of a primary overall contribution.

View Article and Find Full Text PDF

Room-temperature X-ray and neutron diffraction data were measured from a family 11 endoxylanase holoenzyme (XynII) originating from the filamentous fungus Trichoderma longibrachiatum to 1.55 Å resolution using a home source and to 1.80 Å resolution using the Protein Crystallography Station at LANSCE.

View Article and Find Full Text PDF

Improvements in neutron diffraction instrumentation are affording the opportunity to re-examine the structures of vertebrate hemoglobins and to interrogate proton and solvent position changes between the different quaternary states of the protein. For hemoglobins of unknown primary sequence, structural studies of cyanomethemoglobin (CNmetHb) are being used to help to resolve sequence ambiguity in the mass spectra. These studies have also provided additional structural evidence for the involvement of oxidized hemoglobin in the process of erythrocyte senescence.

View Article and Find Full Text PDF

Room-temperature and 100 K X-ray and room-temperature neutron diffraction data have been measured from equine cyanomethemoglobin to 1.7 A resolution using a home source, to 1.6 A resolution on NE-CAT at the Advanced Photon Source and to 2.

View Article and Find Full Text PDF