Bioorthogonal chemistry represents a class of high-yielding chemical reactions that proceed rapidly and selectively in biological environments without side reactions towards endogenous functional groups. Rooted in the principles of physical organic chemistry, bioorthogonal reactions are intrinsically selective transformations not commonly found in biology. Key reactions include native chemical ligation and the Staudinger ligation, copper-catalysed azide-alkyne cycloaddition, strain-promoted [3 + 2] reactions, tetrazine ligation, metal-catalysed coupling reactions, oxime and hydrazone ligations as well as photoinducible bioorthogonal reactions.
View Article and Find Full Text PDFChem Commun (Camb)
September 2020
We report a proximity-driven crosslinking strategy featuring bioorthogonal cyclopropenones. These motifs react with phosphines to form electrophilic ketene-ylides. Such intermediates can be trapped by neighboring proteins to form covalent adducts.
View Article and Find Full Text PDFExpanding the scope of bioorthogonal reactivity requires access to new and mutually compatible reagents. We report here that 1,2,4-triazines can be tuned to exhibit unique reaction profiles with biocompatible strained alkenes and alkynes. Computational analyses were used to identify candidate orthogonal reactions, and the predictions were experimentally verified.
View Article and Find Full Text PDFBioorthogonal chemistries enable researchers to interrogate biomolecules in living systems. These reactions are highly selective and biocompatible and can be performed in many complex environments. However, like any organic transformation, there is no perfect bioorthogonal reaction.
View Article and Find Full Text PDFA general method to synthesize substituted butenolides from hydroxymethylcyclopropenones is reported. Functionalized cyclopropenones undergo ring-opening reactions with catalytic amounts of phosphine, forming reactive ketene ylides. These intermediates can be trapped by pendant hydroxy groups to afford target butenolide scaffolds.
View Article and Find Full Text PDF