Inertial kinetics and kinematics have substantial influences on human biomechanical function. A new algorithm for Inertial Measurement Unit (IMU)-based motion tracking is presented in this work. The primary aims of this paper are to combine recent developments in improved biosensor technology with mainstream motion-tracking hardware to measure the overall performance of human movement based on joint axis-angle representations of limb rotation.
View Article and Find Full Text PDFEven at low to moderate-speeds, rear-end motor vehicle crashes have been strongly associated with occupant cervicocranial biomechanics that lead to head and neck injury. In this paper, we present the development of an analytic mechanics model of occupant head and neck motion as associated with modeled target vehicle Delta V during rear-end vehicular crashes. The inclusion of stochastic mechanical input variables further developed the model beyond the deterministic framework by reflecting aspects of the random nature of real-world crashes and the resulting injuries.
View Article and Find Full Text PDFObjective: To characterize osseointegration as the percent of bone-implant contact (%BIC) along the surface (0.0 mm) as well as at surface profiles 0.5 mm and 1.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
July 2021
Three-point bending is often used during the mechanical determination of tissue material properties. When taken to failure, the test samples often experience high deformations. The objective of this study was to present beam and plate theories as analytical tools for determining tensile and compressive elastic moduli during the transition from flexure to membrane stress states.
View Article and Find Full Text PDFSurgical design in personalized medicine is often based on native anatomy, which may not accurately reflect the interaction between native musculoskeletal tissues and biomechanical artifacts. To overcome this problem, researchers have developed alternative methods based on affordance-based design. The design process can be viewed in terms of action possibilities provided by the (biological) environment.
View Article and Find Full Text PDFObjective: The study aimed to evaluate the effect of internal silver coating as a countermeasure to crestal bone loss around implants with or without multiple abutment disconnections/reconnections.
Materials And Methods: Following tooth extraction, 48 implants with connected healing abutments (24 implants internally coated with elemental silver) were placed in the mandible of eight beagle dogs. Two months after implant surgery one side of the mandible was randomly assigned to four abutment manipulations (disconnection/reconnection) on a weekly basis.
Limiting the quantitative characterization of ambulatory mobility to only the two-dimensional sagittal plane through the investigation of key kinematic parameters, may still inform scientists and bioengineers of critical elements of joint locomotion. This paper presents the initial validation of a deterministic biomechanical gait model that was derived from an inverse kinematic analysis of three-dimensional upper extremity movement. Algebraic methods were applied to generate shoulder flexion and extension angles during a single gait cycle during normal walking.
View Article and Find Full Text PDFBackground: Multipotential precursor cell lines derived from human bone marrow, capable of differentiating into cartilage or bone, may provide a useful tissue development model for studying the regulation and metabolism of putative growth and differentiation factors necessary for tissue regeneration. In mammals, the process of bone development depends on the proliferation and differentiation of osteoblast lineage cells, and the subsequent synthesis and mineralization of bone extracellular matrix (ECM). Vitamin D metabolites play a pivotal role in bone and mineral homeostasis, and are positive factors on bone development.
View Article and Find Full Text PDFA knee joint's longevity depends on the proper integration of structural components in an axial alignment. If just one of the components is abnormally off-axis, the biomechanical system fails, resulting in arthritis. The complexity of various failures in the knee joint has led orthopedic surgeons to select total knee replacement as a primary treatment.
View Article and Find Full Text PDFThis project examines kinematic gait parameters as forensic predictors of the influence associated with individuals carrying concealed weighted packs up to 20% of their body weight. An initial inverse dynamics approach combined with computational algebra provided lower limb joint angles during the stance phase of gait as measured from 12 human subjects during normal walking. The following paper describes the additional biomechanical analysis of the joint angle data to produce kinetic and kinematic parameters further characterizing human motion.
View Article and Find Full Text PDFResearchers have reported several compensation methods to estimate bone and joint position from a cluster of skin-mounted markers as influenced by Soft Tissue Artifacts (STA). Tikhonov Regularization Filtering (TRF) as a means to estimate Instantaneous Screw Axes (ISA) was introduced here as a means to reduce the displacement of a rigid body to its simplest geometric form. Recent studies have suggested that the ISA of the knee, i.
View Article and Find Full Text PDFBackground: It is well established that rollover crashes are associated with a higher risk of serious injury and death than other types of crashes. Some of the most serious injuries that can result from a rollover crash are those to the head, neck and spine. The mechanism of injury to these body parts in a rollover is a matter of dispute in the literature.
View Article and Find Full Text PDFBackground: Ligaments and cartilage contact contribute to the mechanical constraints in the knee joints. However, the precise influence of these structural components on joint movement, especially when the joint constraints are computed using inverse dynamics solutions, is not clear.
Methods: We present a mechanical characterization of the connections between the infinitesimal twist of the tibia and the femur due to restraining forces in the specific tissue components that are engaged and responsible for such motion.
Traditional locomotion studies emphasize an optimization of the desired movement trajectories while ignoring sensory feedback. We propose an information based theory that locomotion is neither triggered nor commanded but controlled. The basis for this control is the information derived from perceiving oneself in the world.
View Article and Find Full Text PDFInt J Occup Environ Health
July 2013
Background: The question of whether chrysotile asbestos-containing brake dust can plausibly serve as a cause of mesothelioma in an exposed individual has become a matter of heated debate in the medical literature despite multiple international, federal, and state governmental agencies acknowledging a causal association.
Objectives: We describe and provide an analysis of various industry and academic perspectives contributing to the debate.
Methods: A framework is presented for evaluating the general and specific causal relationship between brake dust exposure and mesothelioma utilizing the principles of forensic epidemiology, and by applying the Bradford-Hill criteria.
Controlled external chemomechanical stimuli have been shown to influence cellular and tissue regeneration/degeneration, especially with regards to distinct disease sequelae or health maintenance. Recently, a unique three-dimensional stress state was mathematically derived to describe the experimental stresses applied to isolated living cells suspended in an optohydrodynamic trap (optical tweezers combined with microfluidics). These formulae were previously developed in two and three dimensions from the fundamental equations describing creeping flows past a suspended sphere.
View Article and Find Full Text PDFHoppers respond not only to stimuli from the ground surfaces but also to cues generated by their own behaviors. This leads to desensitization because although the afferent and reafferent signals have distinct causes, they are carried by the same sensory channels. From a behavioral viewpoint, it may be necessary to distinguish between signals from the two causes especially when monitoring changes in the external environment separate from those due to self-movement.
View Article and Find Full Text PDFOsteoblastic precursors experience distinct stages during differentiation and bone development, which include proliferation, extracellular matrix (ECM) maturation, and ECM mineralization. It is well known that vitamin D plays a large role in the regulation of bone mineralization and homeostasis via the endocrine system. The activation of vitamin D requires two sequential hydroxylation steps, first in the kidney and then in the liver, in order to carry out its role in calcium homeostasis.
View Article and Find Full Text PDFJet-propelled personal watercraft (PWC) or jet-skis have become increasingly popular. The means of propulsion of PWC, which is a jet of water forced out of small nozzle at the rear of the craft, combined with a high risk of falling off of the seat and into close proximity with the water jet stream, raise the potential for a unique type of injury mechanism. The most serious injuries associated with PWC falls are those that occur when the perineum passes in close proximity to the jet nozzle and the high-pressure water stream enters the vaginal or rectal orifice.
View Article and Find Full Text PDFJ Environ Public Health
July 2012
Polychlorinated biphenyls (PCBs) are synthetic chlorinated hydrocarbons that have extensively polluted the environment and bioaccumulated in the food chain. PCBs have been deemed to be probable carcinogens by the Environmental Protection Agency, and exposure to high levels of PCBs has been consistently linked to increased risk of non-Hodgkin lymphoma (NHL). In the present article we present a forensic epidemiologic evaluation of the causal relationship between NHL and elevated PCB levels via application of the Bradford-Hill criteria.
View Article and Find Full Text PDFInt J Comput Healthc
January 2012
Physiologic regulation of extracellular matrix (ECM) in articular cartilage tissue is controlled by cellular and molecular mechanisms which are not fully understood. It has been observed that the synthesis of the ECM structural molecules, glycosaminoglycan and collagen are promoted by growth factors such as IGF-1 and TGF-β. Concomitant ECM degradation is promoted by a variety of cytokines such as IL-1.
View Article and Find Full Text PDFNon-destructive techniques characterising the mechanical properties of cells, tissues, and biomaterials provide baseline metrics for tissue engineering design. Ultrasonic wave propagation and attenuation has previously demonstrated the dynamics of extracellular matrix synthesis in chondrocyte-seeded hydrogel constructs. In this paper, we describe an ultrasonic method to analyse two of the construct elements used to engineer articular cartilage in real-time, native cartilage explants and an agarose biomaterial.
View Article and Find Full Text PDFWien Med Wochenschr
October 2011
Biomechanical tests of post hoc probability have been proposed by prior authors as reliable tests of causation in forensic settings. Biomechanical assessment of injury kinetics and kinematics is a potentially important tool in forensic medicine, but there is also the potential for misapplication. The most reliable application is when biomechanical analysis is used to explain injury mechanisms, such as how an injury may have occurred.
View Article and Find Full Text PDFMultiscale technology and advanced mathematical models have been developed to control and characterize physicochemical interactions, respectively, enhancing cellular and molecular engineering progress. Ongoing tissue engineering development studies have provided experimental input for biokinetic models examining the influence of static or dynamic mechanical stimuli (Saha, A. K.
View Article and Find Full Text PDFThere has been considerable progress in cellular and molecular engineering due to recent advances in multiscale technology. Such technologies allow controlled manipulation of physiochemical interactions among cells in tissue culture. In particular, a novel chemomechanical bioreactor has recently been designed for the study of bone and cartilage tissue development, with particular focus on extracellular matrix formation.
View Article and Find Full Text PDF