This work looks at the effects of a varying concentration, soak time, pH and temperature on the sorption of tetraammineplatinum(II) chloride (Pt-Ammine) in Nafion-117 films in the context of the electroless plating of ionic polymer-metal composites (IPMCs). Sorption is characterised by atomic absorption spectroscopy. A definitive screening design carried out determined all four factors to be significant for further analysis using response surface modelling.
View Article and Find Full Text PDFIsosorbide-2-carbamate-5-esters are highly potent and selective butyrylcholinesterase inhibitors with potential utility in the treatment of Alzheimer's Disease (AD). They are stable in human plasma but in mouse plasma they undergo hydrolysis at the 5-ester group potentially attenuating in vivo potency. In this paper we explore the role of the 5-position in modulating potency.
View Article and Find Full Text PDFIsosorbide-2-benzyl carbamate-5-benzoate is a highly potent and selective BuChE inhibitor. Meanwhile, isosorbide-2-aspirinate-5-salicylate is a highly effective aspirin prodrug that relies on the salicylate portion to interact productively with human BuChE. By integrating the salicylate group into the carbamate design, we have produced isosorbide-2-benzyl carbamate-5-salicylate, an inhibitor of high potency (150 pM) and selectivity for human BuChE over AChE (666000) and CES2 (23000).
View Article and Find Full Text PDFIn this study, we report the SAR and characterization of two groups of isosorbide-based cholinesterase inhibitors. The first was based directly on the clinically used nitrate isosorbide mononitrate (ISMN) retention of the 5-nitrate group and introduction of a series of 2-carbamate functionalities. The compounds proved to be potent and selective inhibitors of human plasma butyrylcholinesterase ( huBuChE).
View Article and Find Full Text PDFChem Biol Interact
September 2008
We report herein that a variety of isosorbide di-esters, previously reported to be novel substrates for butyrylcholinesterase (BuChE, EC 3.1.1.
View Article and Find Full Text PDFReported here is the synthesis and SAR of novel group of highly potent and selective inhibitors of human plasma butyrylcholinesterase (BuChE; EC 3.1.1.
View Article and Find Full Text PDF