Publications by authors named "Sean R Mills"

Cochlear implants (CIs) have enabled hundreds of thousands of profoundly hearing-impaired people to perceive sounds by electrically stimulating the auditory nerve. However, CI users are often very poor at locating sounds, which leads to impaired sound segregation and threat detection. We provided missing spatial hearing cues through haptic stimulation to augment the electrical CI signal.

View Article and Find Full Text PDF

Cochlear implant (CI) users receive only limited sound information through their implant, which means that they struggle to understand speech in noisy environments. Recent work has suggested that combining the electrical signal from the CI with a haptic signal that provides crucial missing sound information ("electro-haptic stimulation"; EHS) could improve speech-in-noise performance. The aim of the current study was to test whether EHS could enhance speech-in-noise performance in CI users using: (1) a tactile signal derived using an algorithm that could be applied in real time, (2) a stimulation site appropriate for a real-world application, and (3) a tactile signal that could readily be produced by a compact, portable device.

View Article and Find Full Text PDF

Many cochlear implant (CI) users achieve excellent speech understanding in acoustically quiet conditions but most perform poorly in the presence of background noise. An important contributor to this poor speech-in-noise performance is the limited transmission of low-frequency sound information through CIs. Recent work has suggested that tactile presentation of this low-frequency sound information could be used to improve speech-in-noise performance for CI users.

View Article and Find Full Text PDF