Phenological distributions are characterized by their central tendency, breadth, and shape, and all three determine the extent to which interacting species overlap in time. Pollination mutualisms rely on temporal co-occurrence of pollinators and their floral resources, and although much work has been done to characterize the shapes of flower phenological distributions, similar studies that include pollinators are lacking. Here, we provide the first broad assessment of skewness, a component of distribution shape, for a bee community.
View Article and Find Full Text PDFLife-history traits, which are physical traits or behaviours that affect growth, survivorship and reproduction, could play an important role in how well organisms respond to environmental change. By looking for trait-based responses within groups, we can gain a mechanistic understanding of why environmental change might favour or penalize certain species over others. We monitored the abundance of at least 154 bee species for 8 consecutive years in a subalpine region of the Rocky Mountains to ask whether bees respond differently to changes in abiotic conditions based on their life-history traits.
View Article and Find Full Text PDFClimate change is shifting the environmental cues that determine the phenology of interacting species. Plant-pollinator systems may be susceptible to temporal mismatch if bees and flowering plants differ in their phenological responses to warming temperatures. While the cues that trigger flowering are well-understood, little is known about what determines bee phenology.
View Article and Find Full Text PDFLandscape corridors mitigate the negative effects of habitat fragmentation by increasing dispersal. Corridors also increase biodiversity in connected habitat fragments, suggestive of metacommunity dynamics. What is unknown in this case is the mechanisms through which metacommunity dynamics act.
View Article and Find Full Text PDFClimate change can influence consumer populations both directly, by affecting survival and reproduction, and indirectly, by altering resources. However, little is known about the relative importance of direct and indirect effects, particularly for species important to ecosystem functioning, like pollinators. We used structural equation modelling to test the importance of direct and indirect (via floral resources) climate effects on the interannual abundance of three subalpine bumble bee species.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2016
Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others.
View Article and Find Full Text PDF