Publications by authors named "Sean Piantadosi"

Understanding how corticostriatal circuits mediate behavioral selection and initiation in a naturalistic setting is critical to understanding behavior choice and execution in unconstrained situations. The central striatum (CS) is well poised to play an important role in these spontaneous processes. Using fiber photometry and optogenetics, we identify a role for CS in grooming initiation.

View Article and Find Full Text PDF

Stress has been shown to promote the development and persistence of binge eating behaviors. However, the neural circuit mechanisms for stress-induced binge-eating behaviors are largely unreported. The endogenous dynorphin (dyn)/kappa opioid receptor (KOR) opioid neuropeptide system has been well established to be a crucial mediator of the anhedonic component of stress.

View Article and Find Full Text PDF

Neurotechnologies and genetic tools for dissecting neural circuit functions have advanced rapidly over the past decade, although the development of complementary pharmacological method-ologies has comparatively lagged. Understanding the precise pharmacological mechanisms of neuroactive compounds is critical for advancing basic neurobiology and neuropharmacology, as well as for developing more effective treatments for neurological and neuropsychiatric disorders. However, integrating modern tools for assessing neural activity in large-scale neural networks with spatially localized drug delivery remains a major challenge.

View Article and Find Full Text PDF

Compulsive behaviors are a hallmark symptom of obsessive compulsive disorder (OCD). Striatal hyperactivity has been linked to compulsive behavior generation in correlative studies in humans and causal studies in rodents. However, the contribution of the two distinct striatal output populations to the generation and treatment of compulsive behavior is unknown.

View Article and Find Full Text PDF

The basolateral amygdala (BLA) is an evolutionarily conserved brain region, well known for valence processing. Despite this central role, the relationship between activity of BLA neuronal ensembles in response to appetitive and aversive stimuli and the subsequent expression of valence-specific behavior has remained elusive. Here, we leverage two-photon calcium imaging combined with single-cell holographic photostimulation through an endoscopic lens to demonstrate a direct causal role for opposing ensembles of BLA neurons in the control of oppositely valenced behavior in mice.

View Article and Find Full Text PDF

In vivo fluorescence recording techniques have produced landmark discoveries in neuroscience, providing insight into how single cell and circuit-level computations mediate sensory processing and generate complex behaviors. While much attention has been given to recording from cortical brain regions, deep-brain fluorescence recording is more complex because it requires additional measures to gain optical access to harder to reach brain nuclei. Here we discuss detailed considerations and tradeoffs regarding deep-brain fluorescence recording techniques and provide a comprehensive guide for all major steps involved, from project planning to data analysis.

View Article and Find Full Text PDF

Background: Patients with obsessive-compulsive disorder (OCD) display disrupted performance and abnormal lateral orbitofrontal cortex (LOFC) activity during reversal learning tasks. However, it is unknown whether compulsions and reversal learning deficits share a common neural substrate. To answer this question, we measured neural activity with in vivo calcium imaging in LOFC during compulsive grooming and reversal learning before and after fluoxetine treatment.

View Article and Find Full Text PDF

µ-Opioid peptide receptor (MOPR) stimulation alters respiration, analgesia and reward behaviour, and can induce substance abuse and overdose. Despite its evident importance, the endogenous mechanisms for MOPR regulation of consummatory behaviour have remained unknown. Here we report that endogenous MOPR regulation of reward consumption in mice acts through a specific dorsal raphe to nucleus accumbens projection.

View Article and Find Full Text PDF

Dysregulation in contextual processing is believed to affect several forms of psychopathology, such as post-traumatic stress disorder (PTSD). The dentate gyrus (DG), a subregion of the hippocampus, is thought to be an important brain region for disambiguating new experiences from prior experiences. Noradrenergic (NE) neurons in the locus coeruleus (LC) are more tonically active during stressful events and send dense projections to the DG, yet an understanding of their function in DG-dependent contextual discrimination has not been established.

View Article and Find Full Text PDF

Obsessive-compulsive disorder (OCD) is a chronic and severe psychiatric disorder for which effective treatment options are limited. Structural and functional neuroimaging studies have consistently implicated the orbitofrontal cortex (OFC) and striatum in the pathophysiology of the disorder. Recent genetic evidence points to involvement of components of the excitatory synapse in the etiology of OCD.

View Article and Find Full Text PDF

Obsessive compulsive disorder (OCD) is a severe illness that affects 2-3% of people worldwide. OCD neuroimaging studies have consistently shown abnormal activity in brain regions involved in decision-making (orbitofrontal cortex [OFC]) and action selection (striatum). However, little is known regarding molecular changes that may contribute to abnormal function.

View Article and Find Full Text PDF

Background: A parallel downregulation of brain-derived neurotrophic factor (BDNF) and somatostatin (SST), a marker of inhibitory gamma-aminobutyric acid interneurons that target pyramidal cell dendrites, has been reported in several brain areas of subjects with major depressive disorder (MDD). Rodent genetic studies suggest that they are linked and that both contribute to the illness. However, the mechanism by which they contribute to the pathophysiology of the illness has remained elusive.

View Article and Find Full Text PDF

Current first-line treatments for stress-related disorders such as major depressive disorder (MDD) act on monoaminergic systems and take weeks to achieve a therapeutic effect with poor response and low remission rates. Recent research has implicated the GABAergic system in the pathophysiology of depression, including deficits in interneurons targeting the dendritic compartment of cortical pyramidal cells. The present study evaluates whether SH-053-2'F-R-CH3 (denoted "α5-PAM"), a positive allosteric modulator selective for α5-subunit containing GABA receptors found predominantly on cortical pyramidal cell dendrites, has anti-stress effects.

View Article and Find Full Text PDF

Currently approved antidepressant drug treatment typically takes several weeks to be effective. The noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist ketamine has shown efficacy as a rapid-acting treatment of depression, but its use is associated with significant side effects. We assessed effects following blockade of the glycineB co-agonist site of the NMDA receptor, located on the GluN1 subunit, by the selective full antagonist 7-chloro-kynurenic acid (7-Cl-KYNA), delivered by systemic administration of its brain-penetrant prodrug 4-chlorokynurenine (4-Cl-KYN) in mice.

View Article and Find Full Text PDF

Background: Lithium is a mood stabilizer with both antidepressant and antimanic properties, however its mechanism of action is unclear. Identifying the genetic factors that influence lithium's therapeutic actions will be an important step to assist in identifying such mechanisms. We previously reported that lithium treatment of male mice has antidepressant-like effects in the C57BL/6J strain but that such effects were absent in the BALB/cJ strain.

View Article and Find Full Text PDF

The tail-suspension test is a mouse behavioral test useful in the screening of potential antidepressant drugs, and assessing of other manipulations that are expected to affect depression related behaviors. Mice are suspended by their tails with tape, in such a position that it cannot escape or hold on to nearby surfaces. During this test, typically six minutes in duration, the resulting escape oriented behaviors are quantified.

View Article and Find Full Text PDF

The forced swim test is a rodent behavioral test used for evaluation of antidepressant drugs, antidepressant efficacy of new compounds, and experimental manipulations that are aimed at rendering or preventing depressive-like states. Mice are placed in an inescapable transparent tank that is filled with water and their escape related mobility behavior is measured. The forced swim test is straightforward to conduct reliably and it requires minimal specialized equipment.

View Article and Find Full Text PDF