Publications by authors named "Sean P Ng"

Enterococci are important human commensals and significant opportunistic pathogens. Biofilm-related enterococcal infections, such as endocarditis, urinary tract infections, wound and surgical site infections, and medical device-associated infections, often become chronic upon the formation of biofilm. The biofilm matrix establishes properties that distinguish this state from free-living bacterial cells and increase tolerance to antimicrobial interventions.

View Article and Find Full Text PDF

Threatened miscarriage is the most common gynecological emergency, occurring in about 20% of pregnant women. Approximately one in four of these patients go on to have spontaneous miscarriage and the etiology of miscarriage still remains elusive. In a bid to identify possible biomarkers and novel treatment targets, many studies have been undertaken to elucidate the pathways that lead to a miscarriage.

View Article and Find Full Text PDF

Regulation of blood glucose requires precise coordination between different endocrine systems and multiple organs. Type 2 diabetes mellitus (T2D) arises from a dysregulated response to elevated glucose levels in the circulation. Globally, the prevalence of T2D has increased dramatically in all age groups.

View Article and Find Full Text PDF

Angiopoietin-like 4 (ANGPTL4) is a secretory protein that can be cleaved to form an N-terminal and a C-terminal protein. Studies performed thus far have linked ANGPTL4 to several cancer-related and metabolic processes. Notably, several point mutations in the C-terminal ANGPTL4 (cANGPTL4) have been reported, although no studies have been performed that ascribed these mutations to cancer-related and metabolic processes.

View Article and Find Full Text PDF

Growth through controlled adsorption of ferromagnetic elements such as Fe, Co and Ni on two-dimensional silicene provides an alternative route for silicon-based spintronics. Plane wave DFT calculations show that Fe, Co and Ni adatoms are strongly chemisorbed via strong sigma bonds, with adsorption energies (1.55 - 2.

View Article and Find Full Text PDF

We have previously shown that a 'weak' fibronectin type III (fnIII) domain can be engineered to have enhanced mechanical strength by replacing the hydrophobic core with the core of a homologous 'strong' fnIII domain. Here we show that engineering the core is a robust method for manipulating the mechanical strength of this class of proteins. We performed an experiment that is the reverse of one described earlier.

View Article and Find Full Text PDF

Steered molecular dynamics simulations have previously been used to investigate the mechanical properties of the extracellular matrix protein fibronectin. The simulations suggest that the mechanical stability of the tenth type III domain from fibronectin (FNfn10) is largely determined by a number of critical hydrogen bonds in the peripheral strands. Interestingly, the simulations predict that lowering the pH from 7 to approximately 4.

View Article and Find Full Text PDF

The extracellular matrix proteins tenascin and fibronectin experience significant mechanical forces in vivo. Both contain a number of tandem repeating homologous fibronectin type III (fnIII) domains, and atomic force microscopy experiments have demonstrated that the mechanical strength of these domains can vary significantly. Previous work has shown that mutations in the core of an fnIII domain from human tenascin (TNfn3) reduce the unfolding force of that domain significantly: The composition of the core is apparently crucial to the mechanical stability of these proteins.

View Article and Find Full Text PDF

Atomic force microscopy (AFM) offers new insights into the ability of proteins to resist mechanical force. The technique has been opened up by the availability of easy-to-use instruments that are commercially available, so that the technique no longer relies on the need to build instruments in the lab. Indeed it may become common for AFM instruments to sit beside stopped-flow apparatus in protein folding laboratories.

View Article and Find Full Text PDF

Protein engineering Phi-value analysis combined with single molecule atomic force microscopy (AFM) was used to probe the molecular basis for the mechanical stability of TNfn3, the third fibronectin type III domain from human tenascin. This approach has been adopted previously to solve the forced unfolding pathway of a titin immunoglobulin domain, TI I27. TNfn3 and TI I27 are members of different protein superfamilies and have no sequence identity but they have the same beta-sandwich structure consisting of two antiparallel beta-sheets.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session56uo6rvcv5ij98a9if6sop865q3vr2u9): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once