Publications by authors named "Sean P McDarby"

Sodium fluoride (NaF) has been found to be an activation agent in exfoliating a hexagonal boron nitride (hBN) platelet, using a solvent free method. The procedure was carried out by enhancing the intercalation of ferric chloride (FeCl) in an intermediate step, up to 330 °C, followed by removal of the by-product at room temperature. In this research, five additional common salts, including lithium fluoride, potassium fluoride, lithium chloride, sodium chloride, and potassium chloride, were examined and compared to NaF for their effectiveness in achieving maximum exfoliation of commercially available sub-micron-sized hBN.

View Article and Find Full Text PDF

Reproducibility issues resulting from particle growth solutions made with cetyltrimethylammonium bromide (CTAB) surfactant from different lots and product lines in a newly developed synthesis of monometallic palladium (Pd) tetrahexahedra (THH) nanoparticles are investigated a multi-pronged approach. Time-resolved electrochemical measurements of solution potential, variation of chemical parameters in colloidal synthesis, and correlation to electrodeposition syntheses are used together to uncover the effects of the unknown contaminants on the chemical reducing environment during nanoparticle growth. Iodide-a known impurity in commercial CTAB-is identified as one of the required components for equalizing the reducing environment across multiple CTAB sources.

View Article and Find Full Text PDF

The synthesis of shaped metal nanoparticles to meet the precise needs of emerging applications requires intentional synthetic design directed by fundamental chemical principles. We report an integrated electrochemistry approach to nanoparticle synthetic design that couples current-driven growth of metal nanoparticles on an electrode surface-in close analogy to standard colloidal synthesis-with electrochemical measurements of both electrochemical and colloidal nanoparticle growth. A simple chronopotentiometry method was used to translate an existing colloidal synthesis for corrugated palladium (Pd) nanoparticles to electrochemical growth on a glassy carbon electrode, with minimal modification to the growth solution.

View Article and Find Full Text PDF