Publications by authors named "Sean P Leonard"

Unlabelled: Mechanistic understanding of interactions in many host-microbe systems, including the honey bee microbiome, is limited by a lack of easy-to-use genome engineering approaches. To this end, we demonstrate a one-step genome engineering approach for making gene deletions and insertions in the chromosomes of honey bee gut bacterial symbionts. Electroporation of linear or non-replicating plasmid DNA containing an antibiotic resistance cassette flanked by regions with homology to a symbiont genome reliably results in chromosomal integration.

View Article and Find Full Text PDF

Engineered DNA will slow the growth of a host cell if it redirects limiting resources or otherwise interferes with homeostasis. Escape mutants that alleviate this burden can rapidly evolve and take over cell populations, making genetic engineering less reliable and predictable. Synthetic biologists often use genetic parts encoded on plasmids, but their burden is rarely characterized.

View Article and Find Full Text PDF

Summary: The design of two overlapping genes in a microbial genome is an emerging technique for adding more reliable control mechanisms in engineered organisms for increased stability. The design of functional overlapping gene pairs is a challenging procedure, and computational design tools are used to improve the efficiency to deploy successful designs in genetically engineered systems. GENTANGLE (Gene Tuples ArraNGed in overLapping Elements) is a high-performance containerized pipeline for the computational design of two overlapping genes translated in different reading frames of the genome.

View Article and Find Full Text PDF

Engineered DNA will slow the growth of a host cell if it redirects limiting resources or otherwise interferes with homeostasis. Populations of engineered cells can rapidly become dominated by "escape mutants" that evolve to alleviate this burden by inactivating the intended function. Synthetic biologists working with bacteria rely on genetic parts and devices encoded on plasmids, but the burden of different engineered DNA sequences is rarely characterized.

View Article and Find Full Text PDF

Honey bees are economically relevant pollinators experiencing population declines due to a number of threats. As in humans, the health of bees is influenced by their microbiome. The bacterium is a key member of the bee gut microbiome and has a role in excluding pathogens.

View Article and Find Full Text PDF

The development of synthetic biological circuits that maintain functionality over application-relevant time scales remains a significant challenge. Here, we employed synthetic overlapping sequences in which one gene is encoded or 'entangled' entirely within an alternative reading frame of another gene. In this design, the toxin-encoding relE was entangled within ilvA, which encodes threonine deaminase, an enzyme essential for isoleucine biosynthesis.

View Article and Find Full Text PDF

Toolkits of plasmids and genetic parts streamline the process of assembling DNA constructs and engineering microbes. Many of these kits were designed with specific industrial or laboratory microbes in mind. For researchers interested in non-model microbial systems, it is often unclear which tools and techniques will function in newly isolated strains.

View Article and Find Full Text PDF

Unlabelled: Toolkits of plasmids and genetic parts streamline the process of assembling DNA constructs and engineering microbes. Many of these kits were designed with specific industrial or laboratory microbes in mind. For researchers interested in non-model microbial systems, it is often unclear which tools and techniques will function in newly isolated strains.

View Article and Find Full Text PDF

Honey bees are indispensable pollinators and model organisms for studying social behavior, development and cognition. However, their eusociality makes it difficult to use standard forward genetic approaches to study gene function. Most functional genomics studies in bees currently utilize double-stranded RNA (dsRNA) injection or feeding to induce RNAi-mediated knockdown of a gene of interest.

View Article and Find Full Text PDF

Social corbiculate bees are major pollinators. They have characteristic bacterial microbiomes associated with their hives and their guts. In honeybees and bumblebees, worker guts contain a microbiome composed of distinctive bacterial taxa shown to benefit hosts.

View Article and Find Full Text PDF
Article Synopsis
  • The diversity in gut microbiomes, particularly among social bees, is shaped by reproductive isolation from barriers that prevent gene flow between microbial lineages.
  • Two gut-associated bacterial groups, Gilliamella and Snodgrassella, have evolved alongside honey bees and bumble bees for 80 million years, leading to distinct populations with limited gene exchange.
  • Genetic adaptations allow these bacteria to thrive in specific hosts and ecological niches, with Gilliamella demonstrating varying abilities to process dietary components based on their localized habitats within the bee gut.
View Article and Find Full Text PDF

Antibiotics have been applied to honey bee (Apis mellifera) hives for decades to treat Paenibacillus larvae, which causes American foulbrood disease and kills honey bee larvae. One of the few antibiotics approved in apiculture is tylosin tartrate. This study examined how a realistic hive treatment regimen of tylosin affected the gut microbiota of bees and susceptibility to a bacterial pathogen.

View Article and Find Full Text PDF

Insects are an incredibly diverse group of animals with species that benefit and harm natural ecosystems, agriculture, and human health. Many insects have consequential associations with microbes: bacterial symbionts may be embedded in different insect tissues and cell types, inherited across insect generations, and required for insect survival and reproduction. Genetically engineering insect symbionts is key to understanding and harnessing these associations.

View Article and Find Full Text PDF

The gut microbiome plays a critical role in the health of many animals. Honeybees are no exception, as they host a core microbiome that affects their nutrition and immune function. However, the relationship between the honeybee immune system and its gut symbionts is poorly understood.

View Article and Find Full Text PDF

One goal of synthetic biology is to improve the efficiency and predictability of living cells by removing extraneous genes from their genomes. We demonstrate improved methods for engineering the genome of the metabolically versatile and naturally transformable bacterium Acinetobacter baylyi ADP1 and apply them to a genome streamlining project. In Golden Transformation, linear DNA fragments constructed by Golden Gate Assembly are directly added to cells to create targeted deletions, edits, or additions to the chromosome.

View Article and Find Full Text PDF

Honey bees are essential pollinators threatened by colony losses linked to the spread of parasites and pathogens. Here, we report a new approach for manipulating bee gene expression and protecting bee health. We engineered a symbiotic bee gut bacterium, , to induce eukaryotic RNA interference (RNAi) immune responses.

View Article and Find Full Text PDF

The thermal tolerance of an organism limits its ecological and geographic ranges and is potentially affected by dependence on temperature-sensitive symbiotic partners. Aphid species vary widely in heat sensitivity, but almost all aphids are dependent on the nutrient-provisioning intracellular bacterium , which has evolved with aphids for 100 million years and which has a reduced genome potentially limiting heat tolerance. We addressed whether heat sensitivity of underlies variation in thermal tolerance among 5 aphid species.

View Article and Find Full Text PDF

Mobile genetic elements drive evolution by disrupting genes and rearranging genomes. Eukaryotes have evolved epigenetic mechanisms, including DNA methylation and RNA interference, that silence mobile elements and thereby preserve the integrity of their genomes. We created an artificial reprogrammable epigenetic system based on CRISPR interference to give engineered bacteria a similar line of defense against transposons and other selfish elements in their genomes.

View Article and Find Full Text PDF

The gut microbiota of the honey bee (Apis mellifera) offers several advantages as an experimental system for addressing how gut communities affect their hosts and for exploring the processes that determine gut community composition and dynamics. A small number of bacterial species dominate the honey bee gut community. These species are restricted to bee guts and can be grown axenically and genetically manipulated.

View Article and Find Full Text PDF

Engineering the bacteria present in animal microbiomes promises to lead to breakthroughs in medicine and agriculture, but progress is hampered by a dearth of tools for genetically modifying the diverse species that comprise these communities. Here we present a toolkit of genetic parts for the modular construction of broad-host-range plasmids built around the RSF1010 replicon. Golden Gate assembly of parts in this toolkit can be used to rapidly test various antibiotic resistance markers, promoters, fluorescent reporters, and other coding sequences in newly isolated bacteria.

View Article and Find Full Text PDF

Peptides have great potential to combat antibiotic resistance. While many platforms can screen peptides for their ability to bind to target cells, there are virtually no platforms that directly assess the functionality of peptides. This limitation is exacerbated when identifying antimicrobial peptides because the phenotype, death, selects against itself and has caused a scientific bottleneck that confines research to a few naturally occurring classes of antimicrobial peptides.

View Article and Find Full Text PDF

Animal guts are often colonized by host-specialized bacterial species to the exclusion of other transient microorganisms, but the genetic basis of colonization ability is largely unknown. The bacterium Snodgrassella alvi is a dominant gut symbiont in honey bees, specialized in colonizing the hindgut epithelium. We developed methods for transposon-based mutagenesis in S.

View Article and Find Full Text PDF

By introducing engineered tRNA and aminoacyl-tRNA synthetase pairs into an organism, its genetic code can be expanded to incorporate nonstandard amino acids (nsAAs). The performance of these orthogonal translation systems (OTSs) varies greatly, however, with respect to the efficiency and accuracy of decoding a reassigned codon as the nsAA. To enable rapid and systematic comparisons of these critical parameters, we developed a toolkit for characterizing any Escherichia coli OTS that reassigns the amber stop codon (TAG).

View Article and Find Full Text PDF

Unwanted evolution can rapidly degrade the performance of genetically engineered circuits and metabolic pathways installed in living organisms. We created the Evolutionary Failure Mode (EFM) Calculator to computationally detect common sources of genetic instability in an input DNA sequence. It predicts two types of mutational hotspots: deletions mediated by homologous recombination and indels caused by replication slippage on simple sequence repeats.

View Article and Find Full Text PDF