Publications by authors named "Sean P Healey"

Recent global policy initiatives aimed at reducing forest degradation require practical definitions of degradation that are readily monitored. However, consistent approaches for monitoring forest degradation over the long term and at broad scales are lacking. We quantified the long-term effects of intensive wood harvest on above-ground carbon and biodiversity at fine resolutions (30 m) and broad scales (New Brunswick, Canada; 72,908 km).

View Article and Find Full Text PDF

Aboveground biomass density (AGBD) estimates from Earth Observation (EO) can be presented with the consistency standards mandated by United Nations Framework Convention on Climate Change (UNFCCC). This article delivers AGBD estimates, in the format of Intergovernmental Panel on Climate Change (IPCC) Tier 1 values for natural forests, sourced from National Aeronautics and Space Administration's (NASA's) Global Ecosystem Dynamics Investigation (GEDI) and Ice, Cloud and land Elevation Satellite (ICESat-2), and European Space Agency's (ESA's) Climate Change Initiative (CCI). It also provides the underlying classification used by the IPCC as geospatial layers, delineating global forests by ecozones, continents and status (primary, young (≤20 years) and old secondary (>20 years)).

View Article and Find Full Text PDF

Objectives: The generation of structured documents for clinical trials is a promising application of large language models (LLMs). We share opportunities, insights, and challenges from a competitive challenge that used LLMs for automating clinical trial documentation.

Materials And Methods: As part of a challenge initiated by Pfizer (organizer), several teams (participant) created a pilot for generating summaries of safety tables for clinical study reports (CSRs).

View Article and Find Full Text PDF

Global commitments to mitigating climate change and halting biodiversity loss require reliable information about Earth's ecosystems. Increasingly, such information is obtained from multiple sources of remotely sensed data combined with data acquired in the field. This new wealth of data poses challenges regarding the combination of different data sources to derive the required information and assess uncertainties.

View Article and Find Full Text PDF

Accurate characterization of Carbon (C) consequences of forest disturbances and management is critical for informed climate mitigation and adaptation strategies. While research into generalized properties of the forest C cycle informs policy and provides abstract guidance to managers, most management occurs at local scales and relies upon monitoring systems that can consistently provide C cycle assessments that explicitly apply to a defined time and place. We used an inventory-based forest monitoring and simulation tool to quantify C storage effects of actual fires, timber harvests, and forest regeneration conditions in the Greater Yellowstone Ecosystem (GYE).

View Article and Find Full Text PDF

Background: Lidar height data collected by the Geosciences Laser Altimeter System (GLAS) from 2002 to 2008 has the potential to form the basis of a globally consistent sample-based inventory of forest biomass. GLAS lidar return data were collected globally in spatially discrete full waveform "shots," which have been shown to be strongly correlated with aboveground forest biomass. Relationships observed at spatially coincident field plots may be used to model biomass at all GLAS shots, and well-established methods of model-based inference may then be used to estimate biomass and variance for specific spatial domains.

View Article and Find Full Text PDF

Background: Global forests capture and store significant amounts of CO2 through photosynthesis. When carbon is removed from forests through harvest, a portion of the harvested carbon is stored in wood products, often for many decades. The United States Forest Service (USFS) and other agencies are interested in accurately accounting for carbon flux associated with harvested wood products (HWP) to meet greenhouse gas monitoring commitments and climate change adaptation and mitigation objectives.

View Article and Find Full Text PDF

Background: Although significant amounts of carbon may be stored in harvested wood products, the extraction of that carbon from the forest generally entails combustion of fossil fuels. The transport of timber from the forest to primary milling facilities may in particular create emissions that reduce the net sequestration value of product carbon storage. However, attempts to quantify the effects of transport on the net effects of forest management typically use relatively sparse survey data to determine transportation emission factors.

View Article and Find Full Text PDF