p-Type CuBiO is considered a promising metal oxide semiconductor for large-scale, economic solar water splitting due to the optimal band structure and low-cost fabrication. The main challenge in utilizing CuBiO as a photoelectrode for water splitting, is that it must be protected from photo-corrosion in aqueous solutions, an inherent problem for Cu-based metal oxide photoelectrodes. In this work, several buffer layers (CdS, BiVO, and GaO) were tested between CuBiO and conformal TiO as the protection layer.
View Article and Find Full Text PDFWe assess a tandem photoelectrochemical cell consisting of a W:BiVO photoanode top absorber and a CuBiO photocathode bottom absorber for overall solar water splitting. We show that the W:BiVO photoanode oxidizes water and produces oxygen at potentials ≥0.7 V vs RHE when CoPi is added as a cocatalyst.
View Article and Find Full Text PDFA new strategy of using forward gradient self-doping to improve the charge separation efficiency in metal oxide photoelectrodes is proposed. Gradient self-doped CuBiO photocathodes are prepared with forward and reverse gradients in copper vacancies using a two-step, diffusion-assisted spray pyrolysis process. Decreasing the Cu/Bi ratio of the CuBiO photocathodes introduces Cu vacancies that increase the carrier (hole) concentration and lowers the Fermi level, as evidenced by a shift in the flat band toward more positive potentials.
View Article and Find Full Text PDFWe report the growth of well-defined antimony-doped tin oxide (ATO) nanorods as a conductive scaffold to improve hematite's photoelectrochemical water oxidation performance. The hematite grown on ATO exhibits greatly improved performance for photoelectrochemical water oxidation compared to hematite grown on flat fluorine-doped tin oxide (FTO). The optimized photocurrent density of hematite on ATO is 0.
View Article and Find Full Text PDFp-Si/W2C photocathodes are synthesized by evaporating tungsten metal in an ambient of ethylene gas to form tungsten semicarbide (W2C) thin films on top of p-type silicon (p-Si) substrates. As deposited the thin films contain crystalline W2C with a bulk W:C atomic ratio of approximately 2:1. The W2C films demonstrate catalytic activity for the hydrogen evolution reaction (HER), and p-Si/W2C photocathodes produce cathodic photocurrent at potentials more positive than 0.
View Article and Find Full Text PDFNiobium-modified TiO2 hierarchical spherical micrometer-size particles, which consist of many nanowires, are synthesized by solvothermal synthesis and studied as photoelectrodes for water photo-oxidation and dye-sensitized solar cell (DSSC) applications. Incorporation of Nb leads to a rutile-to-anatase TiO2 phase transition in the TiO2 hierarchical spheres (HSs), with the anatase percentage increasing from 0% for the pristine TiO2 HSs to 47.6% for the 1.
View Article and Find Full Text PDFA new dispenser and scanner system is used to create and screen Bi-M-Cu oxide arrays for cathodic photoactivity, where M represents 1 of 22 different transition and post-transition metals. Over 3000 unique Bi : M : Cu atomic ratios are screened. Of the 22 metals tested, 10 show a M-Cu oxide with higher photoactivity than CuO and 10 show a Bi-M-Cu oxide with higher photoactivity than CuBi2O4.
View Article and Find Full Text PDFHere we report simultaneous screening of bimetallic electrocatalyst candidates for the oxygen reduction reaction (ORR) using bipolar electrochemistry. The analysis is carried out by dispensing different bimetallic precursor compositions onto the cathodic poles of an array of bipolar electrodes (BPEs) and then heating them in a reducing atmosphere to yield the catalyst candidates. Because BPEs do not require a direct electrical connection for activation, up to 33 electrocatalysts can be screened simultaneously by applying a voltage to the electrolyte solution in which the BPE array is immersed.
View Article and Find Full Text PDFPorous, nanostructured BiVO4 films are incorporated with Mo and W by simultaneous evaporation of Bi, V, Mo, and W in vacuum followed by oxidation in air. Synthesis parameters such as the Bi : V : Mo : W atomic ratio and deposition angle are adjusted to optimize the films for photoelectrochemical (PEC) water oxidation. Films synthesized with a Bi : V : Mo : W atomic ratio of 46 : 46 : 6 : 2 (6% Mo, 2% W) demonstrate the best PEC performance with photocurrent densities 10 times higher than for pure BiVO4 and greater than previously reported for Mo and W containing BiVO4.
View Article and Find Full Text PDFWe report a synergistic effect involving hydrogenation and nitridation cotreatment of TiO(2) nanowire (NW) arrays that improves the water photo-oxidation performance under visible light illumination. The visible light (>420 nm) photocurrent of the cotreated TiO(2) is 0.16 mA/cm(2) and accounts for 41% of the total photocurrent under simulated AM 1.
View Article and Find Full Text PDFPorous, high surface area materials have critical roles in applications including catalysis, photochemistry, and energy storage. In these fields, researchers have demonstrated that the nanometer-scale structure modifies mechanical, optical, and electrical properties of the material, greatly influencing its behavior and performance. Such complex chemical systems can involve several distinct processes occurring in series or parallel.
View Article and Find Full Text PDF