Publications by authors named "Sean Megason"

Dorsal-ventral patterning of neural progenitors in the posterior neural tube, which gives rise to the spinal cord, has served as a model system to understand how extracellular signals organize developing tissues. While previous work has shown that signaling gradients diversify progenitor fates at the dorsal and ventral ends of the tissue, the basis of fate specification in intermediate regions has remained unclear. Here we use zebrafish to investigate the neural plate, which precedes neural tube formation, and show that its pre-patterning by a distinct signaling environment enables intermediate fate specification.

View Article and Find Full Text PDF

Glial-vascular interactions are critical for the formation and maintenance of brain blood vessels and the blood-brain barrier (BBB) in mammals, but their role in the zebrafish BBB remains unclear. Using three glial gene promoters-, , and (a truncated )-we explored glial-vascular development in zebrafish. Sparse labeling showed fewer glial-vascular interactions at early stages, with glial coverage and contact area increasing with age.

View Article and Find Full Text PDF

Stem cells integrate multiple environmental signals to activate appropriate fate programs. To ensure coherent responses, alternative fates must be concomitantly inactivated. However, mechanisms that coordinate fates in a signal-specific manner are not fully understood.

View Article and Find Full Text PDF

As tissues develop, cells divide and differentiate concurrently. Conflicting evidence shows that cell division is either dispensable or required for formation of cell types. Here, to determine the role of cell division in differentiation, we arrested the cell cycle in zebrafish embryos using two independent approaches and profiled them at single-cell resolution.

View Article and Find Full Text PDF

Brain endothelial cells (BECs) play an important role in maintaining central nervous system (CNS) homeostasis through blood-brain barrier (BBB) functions. BECs express low baseline levels of adhesion receptors, which limits entry of leukocytes. However, the molecular mediators governing this phenotype remain mostly unclear.

View Article and Find Full Text PDF

Background: Spatial mapping on the single-cell level over the whole organism can uncover roles of molecular players involved in vertebrate development. Custom microscopes have been developed that use multiple objectives to view a sample from multiple views at the same time. Such multiview imaging approaches can improve resolution and uniformity of image quality as well as allow whole embryos to be imaged (Swoger et al.

View Article and Find Full Text PDF

A regular heartbeat is essential to vertebrate life. In the mature heart, this function is driven by an anatomically localized pacemaker. By contrast, pacemaking capability is broadly distributed in the early embryonic heart, raising the question of how tissue-scale activity is first established and then maintained during embryonic development.

View Article and Find Full Text PDF

As tissues develop, cells divide and differentiate concurrently. Conflicting evidence shows that cell division is either dispensable or required for formation of cell types. To determine the role of cell division in differentiation, we arrested the cell cycle in zebrafish embryos using two independent approaches and profiled them at single-cell resolution.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) is a unique set of properties of the brain vasculature which severely restrict its permeability to proteins and small molecules. Classic chick-quail chimera studies have shown that these properties are not intrinsic to the brain vasculature but rather are induced by surrounding neural tissue. Here, we identify Spock1 as a candidate neuronal signal for regulating BBB permeability in zebrafish and mice.

View Article and Find Full Text PDF

Much progress has been made toward generating analogs of early embryos, such as gastruloids and embryoids, in vitro. However, methods for how to fully mimic the cell movements of gastrulation and coordinate germ-layer patterning to induce head formation are still lacking. Here, we show that a regional Nodal gradient applied to zebrafish animal pole explant can generate a structure that recapitulates the key cell movements of gastrulation.

View Article and Find Full Text PDF
Article Synopsis
  • - The differential adhesion hypothesis explores how cell adhesion helps cells organize themselves into spatial patterns during development, leading to a variety of adhesion molecules with specific binding properties.
  • - Recent studies suggest that cortical tension plays a key role in regulating cell adhesion and actomyosin contractility, shifting the focus from just adhesion to broader interfacial tension dynamics.
  • - Advances in experimental and theoretical approaches are enhancing our understanding of how adhesion influences tissue patterning, emphasizing the importance of morphogen signaling and cell fate decisions in this process.
View Article and Find Full Text PDF

Morphogenesis, the process by which tissues develop into functional shapes, requires coordinated mechanical forces. Most current literature ascribes contractile forces derived from actomyosin networks as the major driver of tissue morphogenesis. Recent works from diverse species have shown that pressure derived from fluids can generate deformations necessary for tissue morphogenesis.

View Article and Find Full Text PDF

Cell segmentation plays a crucial role in understanding, diagnosing, and treating diseases. Despite the recent success of deep learning-based cell segmentation methods, it remains challenging to accurately segment densely packed cells in 3D cell membrane images. Existing approaches also require fine-tuning multiple manually selected hyperparameters on the new datasets.

View Article and Find Full Text PDF

How tissues acquire complex shapes is a fundamental question in biology and regenerative medicine. Zebrafish semicircular canals form from invaginations in the otic epithelium (buds) that extend and fuse to form the hubs of each canal. We find that conventional actomyosin-driven behaviors are not required.

View Article and Find Full Text PDF

Cellular analysis of developmental processes and toxicities has traditionally entailed bulk methods (e.g., transcriptomics) that lack single cell resolution or tissue localization methods (e.

View Article and Find Full Text PDF

Animal development entails the organization of specific cell types in space and time, and spatial patterns must form in a robust manner. In the zebrafish spinal cord, neural progenitors form stereotypic patterns despite noisy morphogen signaling and large-scale cellular rearrangements during morphogenesis and growth. By directly measuring adhesion forces and preferences for three types of endogenous neural progenitors, we provide evidence for the differential adhesion model in which differences in intercellular adhesion mediate cell sorting.

View Article and Find Full Text PDF

Unlabelled: Animals make organs of precise size, shape, and symmetry but how developing embryos do this is largely unknown. Here, we combine quantitative imaging, physical theory, and physiological measurement of hydrostatic pressure and fluid transport in zebrafish to study size control of the developing inner ear. We find that fluid accumulation creates hydrostatic pressure in the lumen leading to stress in the epithelium and expansion of the otic vesicle.

View Article and Find Full Text PDF

As an optically transparent model organism with an endothelial blood-brain barrier (BBB), zebrafish offer a powerful tool to study the vertebrate BBB. However, the precise developmental profile of functional zebrafish BBB acquisition and the subcellular and molecular mechanisms governing the zebrafish BBB remain poorly characterized. Here, we capture the dynamics of developmental BBB leakage using live imaging, revealing a combination of steady accumulation in the parenchyma and sporadic bursts of tracer leakage.

View Article and Find Full Text PDF

Background: Directed DNA methylation on N6-adenine (6mA), N4-cytosine (4mC), and C5-cytosine (5mC) can potentially increase DNA coding capacity and regulate a variety of biological functions. These modifications are relatively abundant in bacteria, occurring in about a percent of all bases of most bacteria. Until recently, 5mC and its oxidized derivatives were thought to be the only directed DNA methylation events in metazoa.

View Article and Find Full Text PDF

In the developmental process, embryos exhibit a remarkable ability to match their body pattern to their body size; their body proportion is maintained even in embryos that are larger or smaller, within certain limits. Although this phenomenon of scaling has attracted attention for over a century, understanding the underlying mechanisms has been limited, owing in part to a lack of quantitative description of developmental dynamics in embryos of varied sizes. To overcome this limitation, we developed a new technique to surgically reduce the size of zebrafish embryos, which have great advantages for in vivo live imaging.

View Article and Find Full Text PDF

Optical and electron microscopy have made tremendous inroads toward understanding the complexity of the brain. However, optical microscopy offers insufficient resolution to reveal subcellular details, and electron microscopy lacks the throughput and molecular contrast to visualize specific molecular constituents over millimeter-scale or larger dimensions. We combined expansion microscopy and lattice light-sheet microscopy to image the nanoscale spatial relationships between proteins across the thickness of the mouse cortex or the entire brain.

View Article and Find Full Text PDF

The inner ear is a fluid-filled closed-epithelial structure whose function requires maintenance of an internal hydrostatic pressure and fluid composition. The endolymphatic sac (ES) is a dead-end epithelial tube connected to the inner ear whose function is unclear. ES defects can cause distended ear tissue, a pathology often seen in hearing and balance disorders.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the unclear mechanisms that control tissue sizes in animals, using somites as a key example, which vary greatly both within individuals and between species.
  • Despite previous research on the timing of somite formation, the relationship between somite size and the presomitic mesoderm (PSM) length has not been well understood.
  • The researchers propose a new model involving a scaling gradient that influences somite boundaries, which not only explains current observations but also predicts and confirms the presence of periodic size changes following disturbances in somite development.
View Article and Find Full Text PDF

High-throughput mapping of cellular differentiation hierarchies from single-cell data promises to empower systematic interrogations of vertebrate development and disease. Here we applied single-cell RNA sequencing to >92,000 cells from zebrafish embryos during the first day of development. Using a graph-based approach, we mapped a cell-state landscape that describes axis patterning, germ layer formation, and organogenesis.

View Article and Find Full Text PDF

Time series of single-cell transcriptome measurements can reveal dynamic features of cell differentiation pathways. From measurements of whole frog embryos spanning zygotic genome activation through early organogenesis, we derived a detailed catalog of cell states in vertebrate development and a map of differentiation across all lineages over time. The inferred map recapitulates most if not all developmental relationships and associates new regulators and marker genes with each cell state.

View Article and Find Full Text PDF