Background: Autism spectrum disorder (ASD), a neurodevelopmental disorder defined by social communication deficits plus repetitive behaviors and restricted interests, currently affects 1/36 children in the general population. Recent advances in functional brain imaging show promise to provide useful biomarkers of ASD diagnostic likelihood, behavioral trait severity, and even response to therapeutic intervention. However, current gold-standard neuroimaging methods (e.
View Article and Find Full Text PDFHuman studies of early brain development have been limited by extant neuroimaging methods. MRI scanners present logistical challenges for imaging young children, while alternative modalities like functional near-infrared spectroscopy have traditionally been limited by image quality due to sparse sampling. In addition, conventional tasks for brain mapping elicit low task engagement, high head motion, and considerable participant attrition in pediatric populations.
View Article and Find Full Text PDFModern neuroimaging modalities, particularly functional MRI (fMRI), can decode detailed human experiences. Thousands of viewed images can be identified or classified, and sentences can be reconstructed. Decoding paradigms often leverage encoding models that reduce the stimulus space into a smaller yet generalizable feature set.
View Article and Find Full Text PDFFunctional magnetic resonance imaging (fMRI) has dramatically advanced non-invasive human brain mapping and decoding. Functional near-infrared spectroscopy (fNIRS) and high-density diffuse optical tomography (HD-DOT) non-invasively measure blood oxygen fluctuations related to brain activity, like fMRI, at the brain surface, using more-lightweight equipment that circumvents ergonomic and logistical limitations of fMRI. HD-DOT grids have smaller inter-optode spacing (∼13 mm) than sparse fNIRS (∼30 mm) and therefore provide higher image quality, with spatial resolution ∼1/2 that of fMRI.
View Article and Find Full Text PDFA cross-selective aza-pinacol coupling of aldehydes and imines has been developed to afford valuable β-amino alcohols. This strategy enables chemoselective conversion of aliphatic aldehydes to ketyl radicals, in the presence of more easily reduced imines and other functional groups. Upon carbonyl-specific activation by AcI, a photoinitiated Mn catalyst selectively reduces the resulting α-oxy iodide by an atom transfer mechanism.
View Article and Find Full Text PDFAtten Percept Psychophys
August 2019
The ability to inhibit distractors while focusing on specific targets is crucial. In most tasks, like Stroop or priming, the to-be-ignored distractors affect the response to be more like the distractors. We call this assimilation.
View Article and Find Full Text PDFSingle-electron reduction of a carbonyl to a ketyl enables access to a polarity-reversed platform of reactivity for this cornerstone functional group. However, the synthetic utility of the ketyl radical is hindered by the strong reductants necessary for its generation, which also limit its reactivity to net reductive mechanisms. We report a strategy for net redox-neutral generation and reaction of ketyl radicals.
View Article and Find Full Text PDFAqueous conditions were developed for conducting an open-to-air, copper(II)-catalyzed addition of pinBBdan to alkynoates and alkynamides. The simple and mild β-borylation protocol proceeds in a remarkably chemo-, regio-, and stereoselective fashion to afford 1,8-diaminonaphthalene protected (Z)-β-boryl enoates and primary, secondary, and tertiary enamides in good to excellent yields. These reactions demonstrate a high tolerance toward a variety of alkyl, aryl, and heteroatom functional groups and provide convenient access to a diverse range of vinylboronic acid derivatives.
View Article and Find Full Text PDF