Ir catalysts supported by bidentate silyl ligands that contain P- or N-donors are shown to effect ortho borylations for a range of substituted aromatics. The substrate scope is broad, and the modular ligand synthesis allows for flexible catalyst design.
View Article and Find Full Text PDFMolecules labeled with fluorine-18 are used as radiotracers for positron emission tomography. An important challenge is the labeling of arenes not amenable to aromatic nucleophilic substitution (SNAr) with [(18)F]F(-). In the ideal case, the (18)F fluorination of these substrates would be performed through reaction of [(18)F]KF with shelf-stable readily available precursors using a broadly applicable method suitable for automation.
View Article and Find Full Text PDFNot a trace: Borylation of the nitrogen in nitrogen heterocycles or anilines provides a traceless directing group for subsequent catalytic C-H borylation. Selectivities that previously required Boc protection can be achieved; furthermore, the NBpin directing group can be installed and removed in-situ, and product yields are substantially higher. Boc=tert-butoxycarbonyl, pin=pinacolato.
View Article and Find Full Text PDFWith the aid of high-throughput screening, the efficiency of Ir-catalyzed C-H borylations has been assessed as functions of precatalyst, boron reagent, ligand, order of addition, temperature, solvent, and substrate. This study not only validated some accepted practices but also uncovered unconventional conditions that were key to substrate performance. We anticipate that insights drawn from these findings will be used to design reaction conditions for substrates whose borylations are difficult to impossible using standard catalytic conditions.
View Article and Find Full Text PDFExperiment and theory favour a model of C-H borylation where significant proton transfer character exists in the transition state.
View Article and Find Full Text PDF