Publications by authors named "Sean M De la O"

Somatic copy number gains are pervasive across cancer types, yet their roles in oncogenesis are insufficiently evaluated. This inadequacy is partly due to copy gains spanning large chromosomal regions, obscuring causal loci. Here, we employed organoid modeling to evaluate candidate oncogenic loci identified via integrative computational analysis of extreme copy gains overlapping with extreme expression dysregulation in The Cancer Genome Atlas.

View Article and Find Full Text PDF
Article Synopsis
  • The distal lung comprises terminal bronchioles and alveoli that are essential for gas exchange, and developing 3D culture systems can aid in studying lung diseases like interstitial lung disease, cancer, and COVID-19 pneumonia.
  • Researchers have created a long-term, feeder-free culture system for organoids derived from human alveolar epithelial type II and KRT5 basal cells, enabling significant differentiation and the formation of specialized cell types within the lung architecture.
  • This organoid model allows for infection studies with SARS-CoV-2, identifying specific cell populations (like club cells) as potential targets for investigation, thus providing a valuable tool for understanding lung infections and their mechanisms.
View Article and Find Full Text PDF

The distal lung contains terminal bronchioles and alveoli that facilitate gas exchange and is affected by disorders including interstitial lung disease, cancer, and SARS-CoV-2-associated COVID-19 pneumonia. Investigations of these localized pathologies have been hindered by a lack of 3D in vitro human distal lung culture systems. Further, human distal lung stem cell identification has been impaired by quiescence, anatomic divergence from mouse and lack of lineage tracing and clonogenic culture.

View Article and Find Full Text PDF