The transcriptional regulatory machinery of a gene can be viewed as a computational device, with transcription factor concentrations as inputs and expression level as the output. This view begs the question: what kinds of computations are possible? We show that different parameterizations of a simple chemical kinetic model of transcriptional regulation are able to approximate all four standard arithmetic operations: addition, subtraction, multiplication, and division, as well as various equality and inequality operations. This contrasts with other studies that emphasize logical or digital notions of computation in biological networks.
View Article and Find Full Text PDFThoracic radiotherapy may produce the morbidity-associated lung responses of alveolitis or fibrosing alveolitis in treated cancer patients. The genetic factors that influence a patient's likelihood of developing alveolitis and the relationship of this inflammatory response to the development of fibrosis are largely unknown. Herein we use genetic mapping to identify radiation-induced lung response susceptibility loci in reciprocal backcross mice bred from C3H/HeJ (alveolitis response) and C57BL/6J (fibrosing alveolitis/fibrosis response) strains.
View Article and Find Full Text PDFCrit Rev Neurobiol
November 2007
Diffusion of transmitters in the synaptic cleft critically influences synaptic efficacy by affecting both the amplitude and the time course of quantal events, but the value of the diffusion constant is speculative. In this study, we use molecular dynamics simulations to determine how the spatial confinement and membrane charges affect the diffusion constants of glutamate- and water as well as general properties of their diffusion. The synaptic cleft is represented as the space enclosed by two single-wall carbon sheets.
View Article and Find Full Text PDFMolecular dynamics simulations were used to assess the transport of glutamate, water and ions (Na(+) and Cl(-)) in a single wall carbon nanopore. The spatial profiles of Na(+) and Cl(-) ions are largely determined by the pore wall charges. Co-ions are repelled whereas the counter-ions are attracted by the pore charges, but this 'rule' breaks down when the water concentration is set to a level significantly below that in the physiological bulk solution.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
July 2007
Cystic fibrosis (CF) transmembrane conductance regulator (Cftr) knockout mice present the clinical features of low body weight and intestinal disease permitting an assessment of the interrelatedness of these phenotypes in a controlled environment. To identify intestinal alterations that are affected by body weight in CF mice, the histological phenotypes of crypt-villus axis height, goblet cell hyperplasia, mast cell infiltrate, crypt cell proliferation, and apoptosis were measured in a population of 12-wk-old (C57BL/6 x BALB/cJ) F2 Cftr(tm1UNC) and non-CF mice presenting a range of body weight. In addition, cardiac blood samples were assessed, and gene expression profiling of the ileum was completed.
View Article and Find Full Text PDF