Publications by authors named "Sean Lubner"

The development of a colloidal synthesis procedure to produce nanomaterials with high shape and size purity is often a time-consuming, iterative process. This is often due to quantitative uncertainties in the required reaction conditions and the time, resources, and expertise intensive characterization methods required for quantitative determination of nanomaterial size and shape. Absorption spectroscopy is often the easiest method for colloidal nanomaterial characterization.

View Article and Find Full Text PDF

This work demonstrates a method to design photonic surfaces by combining femtosecond laser processing with the inverse design capabilities of tandem neural networks that directly link laser fabrication parameters to their resulting textured substrate optical properties. High throughput fabrication and characterization platforms are developed that generate a dataset comprising 35280 unique microtextured surfaces on stainless steel with corresponding measured spectral emissivities. The trained model utilizes the nonlinear one-to-many mapping between spectral emissivity and laser parameters.

View Article and Find Full Text PDF

Monitoring real-world battery degradation is crucial for the widespread application of batteries in different scenarios. However, acquiring quantitative degradation information in operating commercial cells is challenging due to the complex, embedded, and/or qualitative nature of most existing sensing techniques. This process is essentially limited by the type of signals used for detection.

View Article and Find Full Text PDF

The mass adoption of electric vehicles is hindered by the inadequate extreme fast charging (XFC) performance (i.e., less than 15 min charging time to reach 80% state of charge) of commercial high-specific-energy (i.

View Article and Find Full Text PDF

The lithium metal-solid-state electrolyte interface plays a critical role in the performance of solid-state batteries. However, operando characterization of the buried interface morphology in solid-state cells is particularly difficult because of the lack of direct optical access. Destructive techniques that require isolating the interface inadvertently modify the interface and cannot be used for operando monitoring.

View Article and Find Full Text PDF

Optical device design is typically an iterative optimization process based on a good initial guess from prior reports. Optical properties databases are useful in this process but difficult to compile because their parsing requires finding relevant papers and manually converting graphical emissivity curves to data tables. Here, we present two contributions: one is a dataset of thermal emissivity records with design-related parameters, and the other is a software tool for automated colored curve data extraction from scientific plots.

View Article and Find Full Text PDF

There is an urgent need for sensors deployed during focal therapies to inform treatment planning and in vivo monitoring in thin tissues. Specifically, the measurement of thermal properties, cooling surface contact, tissue thickness, blood flow and phase change with mm to sub mm accuracy are needed. As a proof of principle, we demonstrate that a micro-thermal sensor based on the supported "3ω" technique can achieve this in vitro under idealized conditions in 0.

View Article and Find Full Text PDF

Accurate knowledge of the thermal conductivity (k) of biological tissues is important for cryopreservation, thermal ablation, and cryosurgery. Here, we adapt the 3ω method-widely used for rigid, inorganic solids-as a reusable sensor to measure k of soft biological samples two orders of magnitude thinner than conventional tissue characterization methods. Analytical and numerical studies quantify the error of the commonly used "boundary mismatch approximation" of the bi-directional 3ω geometry, confirm that the generalized slope method is exact in the low-frequency limit, and bound its error for finite frequencies.

View Article and Find Full Text PDF

A thermal diode is a two-terminal nonlinear device that rectifies energy carriers (for example, photons, phonons and electrons) in the thermal domain, the heat transfer analogue to the familiar electrical diode. Effective thermal rectifiers could have an impact on diverse applications ranging from heat engines to refrigeration, thermal regulation of buildings and thermal logic. However, experimental demonstrations have lagged far behind theoretical proposals.

View Article and Find Full Text PDF