Problem: Leukocytes from the maternal-fetal interface are a valuable tool to study local changes in immune function during pregnancy; however, sampling can be challenging due to inadequate tissue availability and the invasive nature of placental bed biopsy. Here, we aim to purify and characterize leukocytes from paired peripheral and uterine blood samples to assess whether a less invasive method of uterine blood collection could yield a population of enriched uterine leukocytes suitable for ex vivo and in vitro analyses.
Method Of Study: Human peripheral blood mononuclear cells (PBMC) and uterine blood mononuclear cells (UBMC) expressed from surgical gauze post C-section were isolated, and immunophenotypic information was acquired by multi-parameter flow cytometry.
Reproductive physiology and immunology as scientific disciplines each have rich, largely independent histories. The physicians and philosophers of ancient Greece made remarkable observations and inferences to explain regeneration as well as illness and immunity. The scientific enlightenment of the renaissance and the technological advances of the past century have led to the explosion of knowledge that we are experiencing today.
View Article and Find Full Text PDFProgesterone is a gonadal pro-gestational hormone that is absolutely necessary for the success of pregnancy. Most notable actions of progesterone are observed in the female reproductive organs, the uterus and the ovary. Acting through the nuclear progesterone receptor (PGR), progesterone prepares the endometrium for implantation of the embryo.
View Article and Find Full Text PDFMembrane-bound extracellular vesicles (EVs) mediate intercellular communication in all organisms, and those produced by placental mammals have become increasingly recognized as significant mediators of fetal-maternal communication. Here, we aimed to identify maternal cells targeted by placental EVs and elucidate the mechanisms by which they traffic to these cells. Exogenously administered pregnancy-associated EVs traffic specifically to the lung; further, placental EVs associate with lung interstitial macrophages and liver Kupffer cells in an integrin-dependent manner.
View Article and Find Full Text PDFSuccessful pregnancy outcome is partially determined by the suppression of reactive effector T cells by maternal regulatory T cells (T) at the maternal-fetal interface. While a large area of research has focused on the regulation of peripherally-induced T (pT) distribution and differentiation using transgenic mouse models and human samples, studies focusing on the role of T derived from the thymus (tT), and the potential role of central tolerance in maternal-fetal tolerance is less explored. The genome of the fetus is composed of both the tissue-specific and paternally-inherited antigens, and a break in maternal immune tolerance to either antigen may result in adverse pregnancy outcomes.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are increasingly recognized as important mediators of intercellular communication that carry protein, lipids, and nucleic acids via the circulation to target cells whereupon they mediate physiological changes. In pregnancy, EVs are released in high quantities from the placenta and have been postulated to target multiple cell types, including those of the vascular and immune systems. However, most studies of pregnancy-associated EVs have used clinical samples and in vitro models; to date, few studies have taken advantage of murine models in which pregnancy can be precisely timed and manipulated.
View Article and Find Full Text PDF