Publications by authors named "Sean K Liew"

SET domain bifurcated protein 1 (SETDB1) is a human histone-lysine methyltransferase which is amplified in human cancers and was shown to be crucial in the growth of non-small and small cell lung carcinoma. In addition to its catalytic domain, SETDB1 harbors a unique tandem tudor domain which recognizes histone sequences containing both methylated and acetylated lysines, and likely contributes to its localization on chromatin. Using X-ray crystallography and NMR spectroscopy fragment screening approaches, we have identified the first small molecule fragment hits that bind to histone peptide binding groove of the Tandem Tudor Domain (TTD) of SETDB1.

View Article and Find Full Text PDF

During the revision of this Article prior to publication, a computational study was reported (Vallejos, M. M. & Pellegrinet, S.

View Article and Find Full Text PDF

Tetracoordinate MIDA (N-methyliminodiacetic acid) boronates have found broad utility in chemical synthesis. Here, we describe mechanistic insights into the migratory aptitude of the MIDA boryl group in boron transfer processes, and show that the hemilability of the nitrogen atom on the MIDA ligand enables boron to mechanistically resemble either a hydride or a proton. The first case involves a 1,2-boryl shift, in which boron migrates as a nucleophile in its tetracoordinate form.

View Article and Find Full Text PDF

Herein, we demonstrate the synthesis and functionalization of α-boryl aldoximes from α-boryl aldehydes, with no sign of C-to-N boryl migration. Selective modification of the oxime functionality enables access to a wide range of borylated compounds, such as borylated heterocycles and N-acetoxyamides. By reducing the α-boryl aldoximes, MIDA deprotection yields the corresponding β-boryl hydroxylamines.

View Article and Find Full Text PDF

A chemoselective N-oxidation/Meisenheimer rearrangement protocol was developed to generate vinylaziridine scaffolds from aziridine aldehydes. A subsequent Lewis acid-mediated aziridine ring opening with carboxylic acid nucleophiles followed by N-O bond cleavage furnishes a human skin 6-hydroxyceramide natural product in short order. The utility of this methodology is demonstrated by the preparation of a number of unnatural 6-hydroxyceramide analogues.

View Article and Find Full Text PDF

Boratriazaroles were discovered in the late 1960s, and since then, a variety of substituted boratriazarole derivatives have been prepared. However, no study has compared the properties of these BN heterocycles with their carbon-based analogues. In this work, we have prepared a series of boratriazarole derivatives and have investigated how structural variations in the five-member heterocycle affect photophysical and electronic properties.

View Article and Find Full Text PDF

Herein, we demonstrate the use of α-boryl aldehydes and acyl boronates in the synthesis of aminoboronic acid derivatives. This work highlights the untapped potential of boron-substituted iminium ions and offers insights into the behavior of N-methyliminodiacetyl (MIDA) boronates during condensation and tautomerization processes. The preparative value of this contribution lies in the demonstration that various amines, including linear and cyclic peptides, can be readily conjugated with boron-containing fragments.

View Article and Find Full Text PDF

Herein, we describe the bromomethyl acyl boronate linchpin--an enabling reagent for the condensation-driven assembly of novel bis(heteroaryl) motifs. This building block is readily accessible from commercially available starting materials. A variety of 2-amino- and 2-methylpyridines were reacted with MIDA-protected bromomethyl acylboronate to afford 2-boryl imidazo[1,2-a]pyridine and 2-boryl indolizine derivatives, respectively, in excellent yields.

View Article and Find Full Text PDF

Vicinal aziridine-containing diamines have been obtained with high syn-stereoselectivity from readily available aziridine aldehyde dimers in the Petasis borono-Mannich reaction. Subsequent solvent- and/or nucleophile-dependent ring-opening of the aziridine ring yields functionalized 1,2- and 1,3-diamines with high regioselectivity. The ring opening is also influenced by the substitution at the C3 position of the aziridine.

View Article and Find Full Text PDF

(119)Sn Mössbauer spectroscopy was performed on a series of formal Sn(II) dichloride and dihydride adducts bound by either carbon- or phosphorus-based electron pair donors. Upon binding electron-withdrawing metal pentacarbonyl units to the tin centers in LB·SnCl2·M(CO)5 (LB = Lewis base; M = Cr or W), a significant decrease in isomer shift (IS) was noted relative to the unbound Sn(II) complexes, LB·SnCl2, consistent with removal of nonbonding s-electron density from tin upon forming Sn-M linkages (M = Cr and W). Interestingly, when the nature of the Lewis base in the series LB·SnCl2·W(CO)5 was altered, very little change in the IS values was noted, implying that the LB-Sn bonds were constructed with tin-based orbitals of large p-character (as supported by prior theoretical studies).

View Article and Find Full Text PDF

The synthesis and coordination chemistry of a series of dianionic bis(amido)silyl and bis(amido)disilyl, [NSiN] and [NSiSiN], chelates with N-bound aryl or sterically modified triarylsilyl (SiAr(3)) groups is reported. In order to provide a consistent comparison of the steric coverage afforded by each ligand construct, various two-coordinate N-heterocyclic germylene complexes featuring each ligand set were prepared and oxidative S-atom transfer chemistry was explored. In the cases where clean oxidation transpired, sulfido-bridged centrosymmetric germanium(IV) dimers of the general form [LGe(μ-S)](2) (L = bis(amidosilyl) ligands) were obtained in lieu of the target monomeric germanethiones with discrete Ge═S double bonds.

View Article and Find Full Text PDF

The N-heterocyclic olefin, IPr=CH(2) (IPr = [(HCNDipp)(2)C], Dipp = 2,6-(i)Pr(2)C(6)H(3)) has been demonstrated to be of sufficient Lewis basicity to stabilize main group hydrides in unusually low oxidation states.

View Article and Find Full Text PDF

The heavy group 14 methylene analogues, EH2, (E = Ge and Sn) have been stabilized via efficient methods, thus enabling the chemistry of these novel inorganic hydrides to be explored in depth.

View Article and Find Full Text PDF