Publications by authors named "Sean J Mcilwain"

Article Synopsis
  • Ultradense peptide binding arrays provide a means to study millions of peptides in serum samples, enhancing our understanding of immune responses through antibody profiling.
  • The HERON R package was developed to identify immunogenic epitopes and analyze antibody targets across multiple samples while estimating their significance at different biological levels.
  • HERON is competitive in identifying key antibody regions for diagnostics and treatment, and it's available for use on Bioconductor at the provided link.
View Article and Find Full Text PDF
Article Synopsis
  • Estrogen receptor-positive (ER-positive) breast cancer often recurs later after initial treatment, and high levels of the protein GRHL2 are linked to a worse prognosis compared to ER-negative types.
  • *GRHL2 boosts traits associated with stem cells and dormancy in ER-positive breast cancer cells, resulting in a stronger epithelial identity and a shift towards a hybrid epithelial to mesenchymal transition (EMT).
  • *Research shows that increased GRHL2 leads to reduced cell growth and greater dormancy marker expression, along with enhanced self-renewal capabilities and changes in influential transcription factor motifs, suggesting it plays a significant role in cancer progression.*
View Article and Find Full Text PDF

Introduction: Before they can produce their own antibodies, newborns are protected from infections by transplacental transfer of maternal IgG antibodies and after birth through breast milk IgA antibodies. Rhinovirus (RV) infections are extremely common in early childhood, and while RV infections often result in only mild upper respiratory illnesses, they can also cause severe lower respiratory illnesses such as bronchiolitis and pneumonia.

Methods: We used high-density peptide arrays to profile infant and maternal antibody reactivity to capsid and full proteome sequences of three human RVs - A16, B52, and C11.

View Article and Find Full Text PDF

Yin Yang 1 (YY1) and structural maintenance of chromosomes 3 (SMC3) are 2 critical chromatin structural factors that mediate long-distance enhancer-promoter interactions and promote developmentally regulated changes in chromatin architecture in hematopoietic stem/progenitor cells (HSPCs). Although YY1 has critical functions in promoting hematopoietic stem cell (HSC) self-renewal and maintaining HSC quiescence, SMC3 is required for proper myeloid lineage differentiation. However, many questions remain unanswered regarding how YY1 and SMC3 interact with each other and affect hematopoiesis.

View Article and Find Full Text PDF

Before they can produce their own antibodies, newborns are protected from infections by transplacental transfer of maternal IgG antibodies and after birth through breast milk IgA antibodies. Rhinovirus (RV) infections are extremely common in early childhood, and while RV infections often result in only mild upper respiratory illnesses, they can also cause severe lower respiratory illnesses such as bronchiolitis and pneumonia. We used high-density peptide arrays to profile infant and maternal antibody reactivity to capsid and full proteome sequences of three human RVs - A16, B52, and C11.

View Article and Find Full Text PDF

Sera of immune mice that were previously cured of their melanoma through a combined radiation and immunocytokine immunotherapy regimen consisting of 12 Gy of external beam radiation and the intratumoral administration of an immunocytokine (anti-GD2 mAb coupled to IL-2) with long-term immunological memory showed strong antibody-binding against melanoma tumor cell lines via flow cytometric analysis. Using a high-density whole-proteome peptide array (of 6.090.

View Article and Find Full Text PDF

Motivation: Native top-down proteomics (nTDP) integrates native mass spectrometry (nMS) with top-down proteomics (TDP) to provide comprehensive analysis of protein complexes together with proteoform identification and characterization. Despite significant advances in nMS and TDP software developments, a unified and user-friendly software package for analysis of nTDP data remains lacking.

Results: We have developed MASH Native to provide a unified solution for nTDP to process complex datasets with database searching capabilities in a user-friendly interface.

View Article and Find Full Text PDF

Ultradense peptide binding arrays that can probe millions of linear peptides comprising the entire proteomes or immunomes of human or mouse, or numerous microbes, are powerful tools for studying the abundance of different antibody repertoire in serum samples to understand adaptive immune responses. There are few statistical analysis tools for exploring high-dimensional, significant and reproducible antibody targets for ultradense peptide binding arrays at the linear peptide, epitope (grouping of adjacent peptides), and protein level across multiple samples/subjects (I.e.

View Article and Find Full Text PDF
Article Synopsis
  • Single-cell proteomics allows researchers to study the differences in cell characteristics and their specific functions, but it faces challenges in analyzing various protein forms due to genetic and molecular changes.
  • The researchers developed a highly sensitive method for analyzing protein forms in individual muscle cells (single muscle fibers), enabling a better understanding of their diverse functional and protein properties.
  • Their findings show that there is significant variation in large protein forms among different muscle fibers, helping to classify these fibers based on their unique protein compositions and linking them to muscle function.
View Article and Find Full Text PDF

An important paradigm in allogeneic hematopoietic cell transplantations (allo-HCTs) is the prevention of graft-versus-host disease (GVHD) while preserving the graft-versus-leukemia (GVL) activity of donor T cells. From an observational clinical study of adult allo-HCT recipients, we identified a CD4/CD8 double-positive T cell (DPT) population, not present in starting grafts, whose presence was predictive of ≥ grade 2 GVHD. Using an established xenogeneic transplant model, we reveal that the DPT population develops from antigen-stimulated CD8 T cells, which become transcriptionally, metabolically, and phenotypically distinct from single-positive CD4 and CD8 T cells.

View Article and Find Full Text PDF

Native top-down proteomics (nTDP) integrates native mass spectrometry (nMS) with top-down proteomics (TDP) to provide comprehensive analysis of protein complexes together with proteoform identification and characterization. Despite significant advances in nMS and TDP software developments, a unified and user-friendly software package for analysis of nTDP data remains lacking. Herein, we have developed MASH Native to provide a unified solution for nTDP to process complex datasets with database searching capabilities in a user-friendly interface.

View Article and Find Full Text PDF

Background: Humans with inactivating mutations in growth hormone receptor (GHR) have lower rates of cancer, including prostate cancer. Similarly, mice with inactivating Ghr mutations are protected from prostatic intraepithelial neoplasia in the C3(1)/TAg prostate cancer model. However, gaps in clinical relevance in those models persist.

View Article and Find Full Text PDF

Previous studies investigating the effects of blocking the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis in prostate cancer found no effects of the growth hormone receptor (GHR) antagonist, pegvisomant, on the growth of grafted human prostate cancer cells in vivo. However, human GHR is not activated by mouse GH, so direct actions of GH on prostate cancer cells were not evaluated in this context. The present study addresses the species specificity of GH-GHR activity by investigating GH actions in prostate cancer cell lines derived from a mouse Pten-deletion model.

View Article and Find Full Text PDF

The search for potential antibody-based diagnostics, vaccines, and therapeutics for pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has focused almost exclusively on the spike (S) and nucleocapsid (N) proteins. Coronavirus membrane (M), ORF3a, and ORF8 proteins are humoral immunogens in other coronaviruses (CoVs) but remain largely uninvestigated for SARS-CoV-2. Here, we use ultradense peptide microarray mapping to show that SARS-CoV-2 infection induces robust antibody responses to epitopes throughout the SARS-CoV-2 proteome, particularly in M, in which 1 epitope achieved excellent diagnostic accuracy.

View Article and Find Full Text PDF

Three-dimensional (3D) human induced pluripotent stem cell-derived engineered cardiac tissues (hiPSC-ECTs) have emerged as a promising alternative to two-dimensional hiPSC-cardiomyocyte monolayer systems because hiPSC-ECTs are a closer representation of endogenous cardiac tissues and more faithfully reflect the relevant cardiac pathophysiology. The ability to perform functional and molecular assessments using the same hiPSC-ECT construct would allow for more reliable correlation between observed functional performance and underlying molecular events, and thus is critically needed. Herein, for the first time, we have established an integrated method that permits sequential assessment of functional properties and top-down proteomics from the same single hiPSC-ECT construct.

View Article and Find Full Text PDF

The search for potential antibody-based diagnostics, vaccines, and therapeutics for pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has focused almost exclusively on the spike (S) and nucleocapsid (N) proteins. Coronavirus membrane (M), ORF3a, and ORF8 proteins are humoral immunogens in other coronaviruses (CoVs) but remain largely uninvestigated for SARS-CoV-2. Here we use ultradense peptide microarray mapping to show that SARS-CoV-2 infection induces robust antibody responses to epitopes throughout the SARS-CoV-2 proteome, particularly in M, in which one epitope achieved excellent diagnostic accuracy.

View Article and Find Full Text PDF

Hypertrophic cardiomyopathy (HCM) is the most common heritable heart disease. Although the genetic cause of HCM has been linked to mutations in genes encoding sarcomeric proteins, the ability to predict clinical outcomes based on specific mutations in HCM patients is limited. Moreover, how mutations in different sarcomeric proteins can result in highly similar clinical phenotypes remains unknown.

View Article and Find Full Text PDF

Top-down mass spectrometry (MS)-based proteomics enable a comprehensive analysis of proteoforms with molecular specificity to achieve a proteome-wide understanding of protein functions. However, the lack of a universal software for top-down proteomics is becoming increasingly recognized as a major barrier, especially for newcomers. Here, we have developed MASH Explorer, a universal, comprehensive, and user-friendly software environment for top-down proteomics.

View Article and Find Full Text PDF

Top-down mass spectrometry (MS) is a powerful tool for the identification and comprehensive characterization of proteoforms arising from alternative splicing, sequence variation, and post-translational modifications. However, the complex data set generated from top-down MS experiments requires multiple sequential data processing steps to successfully interpret the data for identifying and characterizing proteoforms. One critical step is the deconvolution of the complex isotopic distribution that arises from naturally occurring isotopes.

View Article and Find Full Text PDF

Rationale: Human pluripotent stem cell (hPSC)-derived cardiomyocytes exhibit the properties of fetal cardiomyocytes, which limits their applications. Various methods have been used to promote maturation of hPSC-cardiomyocytes; however, there is a lack of an unbiased and comprehensive method for accurate assessment of the maturity of hPSC-cardiomyocytes.

Objective: We aim to develop an unbiased proteomics strategy integrating high-throughput top-down targeted proteomics and bottom-up global proteomics for the accurate and comprehensive assessment of hPSC-cardiomyocyte maturation.

View Article and Find Full Text PDF

Expression of T-cell checkpoint receptors can compromise antitumor immunity. Blockade of these receptors, notably PD-1 and LAG-3, which become expressed during T-cell activation with vaccination, can improve antitumor immunity. We evaluated whether T-cell checkpoint expression could be separated from T-cell activation in the context of innate immune stimulation with TLR agonists.

View Article and Find Full Text PDF

Despite advancements in symptom management for heart failure (HF), this devastating clinical syndrome remains the leading cause of death in the developed world. Studies using animal models have greatly advanced our understanding of the molecular mechanisms underlying HF; however, differences in cardiac physiology and the manifestation of HF between animals, particularly rodents, and humans necessitates the direct interrogation of human heart tissue samples. Nevertheless, an ever-present concern when examining human heart tissue samples is the potential for artefactual changes related to temperature changes during tissue shipment or sample processing.

View Article and Find Full Text PDF

Background: is a natural ethanologen being developed and deployed as an industrial biofuel producer. To date, eight strains have been completely sequenced and found to contain 2-8 native plasmids. However, systematic verification of predicted plasmid genes and their contribution to cell fitness has not been hitherto addressed.

View Article and Find Full Text PDF

Caloric restriction (CR) extends lifespan and delays the onset of age-related disorders in diverse species. Metabolic regulatory pathways have been implicated in the mechanisms of CR, but the molecular details have not been elucidated. Here, we show that CR engages RNA processing of genes associated with a highly integrated reprogramming of hepatic metabolism.

View Article and Find Full Text PDF