Publications by authors named "Sean Humphrey"

Type 2 diabetes is preceded by a defective insulin response, yet our knowledge of the precise mechanisms is incomplete. Here, we investigate how insulin resistance alters skeletal muscle signaling and how exercise partially counteracts this effect. We measured parallel phenotypes and phosphoproteomes of insulin-resistant (IR) and insulin-sensitive (IS) men as they responded to exercise and insulin (n = 19, 114 biopsies), quantifying over 12,000 phosphopeptides in each biopsy.

View Article and Find Full Text PDF

In the Greenlandic Inuit population, 4% are homozygous carriers of a genetic nonsense TBC1D4 p.Arg684Ter variant leading to loss of the muscle-specific isoform of TBC1D4 and an approximately tenfold increased risk of type 2 diabetes. Here we show the metabolic consequences of this variant in four female and four male homozygous carriers and matched controls.

View Article and Find Full Text PDF

Mass spectrometry has revolutionized cell signaling research by vastly simplifying the analysis of many thousands of phosphorylation sites in the human proteome. Defining the cellular response to perturbations is crucial for further illuminating the functionality of the phosphoproteome. Here we describe µPhos ('microPhos'), an accessible phosphoproteomics platform that permits phosphopeptide enrichment from 96-well cell culture and small tissue amounts in <8 h total processing time.

View Article and Find Full Text PDF

Metabolic disease is caused by a combination of genetic and environmental factors, yet few studies have examined how these factors influence signal transduction, a key mediator of metabolism. Using mass spectrometry-based phosphoproteomics, we quantified 23,126 phosphosites in skeletal muscle of five genetically distinct mouse strains in two dietary environments, with and without acute in vivo insulin stimulation. Almost half of the insulin-regulated phosphoproteome was modified by genetic background on an ordinary diet, and high-fat high-sugar feeding affected insulin signalling in a strain-dependent manner.

View Article and Find Full Text PDF

A major challenge in mass spectrometry-based phosphoproteomics lies in identifying the substrates of kinases, as currently only a small fraction of substrates identified can be confidently linked with a known kinase. Machine learning techniques are promising approaches for leveraging large-scale phosphoproteomics data to computationally predict substrates of kinases. However, the small number of experimentally validated kinase substrates (true positive) and the high data noise in many phosphoproteomics datasets together limit their applicability and utility.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primarily infects the respiratory tract, but pulmonary and cardiac complications occur in severe coronavirus disease 2019 (COVID-19). To elucidate molecular mechanisms in the lung and heart, we conducted paired experiments in human stem cell-derived lung alveolar type II (AT2) epithelial cell and cardiac cultures infected with SARS-CoV-2. With CRISPR-Cas9-mediated knockout of ACE2, we demonstrated that angiotensin-converting enzyme 2 (ACE2) was essential for SARS-CoV-2 infection of both cell types but that further processing in lung cells required TMPRSS2, while cardiac cells required the endosomal pathway.

View Article and Find Full Text PDF

The failure of metabolic tissues to appropriately respond to insulin ("insulin resistance") is an early marker in the pathogenesis of type 2 diabetes. Protein phosphorylation is central to the adipocyte insulin response, but how adipocyte signaling networks are dysregulated upon insulin resistance is unknown. Here we employ phosphoproteomics to delineate insulin signal transduction in adipocyte cells and adipose tissue.

View Article and Find Full Text PDF

White adipose tissue is deposited mainly as subcutaneous adipose tissue (SAT), often associated with metabolic protection, and abdominal/visceral adipose tissue, which contributes to metabolic disease. To investigate the molecular underpinnings of these differences, we conducted comprehensive proteomics profiling of whole tissue and isolated adipocytes from these two depots across two diets from C57Bl/6J mice. The adipocyte proteomes from lean mice were highly conserved between depots, with the major depot-specific differences encoded by just 3% of the proteome.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is the most common and aggressive form of acute leukemia, with a 5-year survival rate of just 24%. Over a third of all AML patients harbor activating mutations in kinases, such as the receptor tyrosine kinases FLT3 (receptor-type tyrosine-protein kinase FLT3) and KIT (mast/stem cell growth factor receptor kit). FLT3 and KIT mutations are associated with poor clinical outcomes and lower remission rates in response to standard-of-care chemotherapy.

View Article and Find Full Text PDF

Spermatozoa acquire fertilization potential during passage through a highly specialized region of the extratesticular ductal system known as the epididymis. In the absence of de novo gene transcription or protein translation, this functional transformation is extrinsically driven via the exchange of varied macromolecular cargo between spermatozoa and the surrounding luminal plasma. Key among these changes is a substantive remodeling of the sperm proteomic architecture, the scale of which has yet to be fully resolved.

View Article and Find Full Text PDF

Insulin-induced GLUT4 translocation to the plasma membrane in muscle and adipocytes is crucial for whole-body glucose homeostasis. Currently, GLUT4 trafficking assays rely on overexpression of tagged GLUT4. Here we describe a high-content imaging platform for studying endogenous GLUT4 translocation in intact adipocytes.

View Article and Find Full Text PDF

Unlabelled: SARS-CoV-2 primarily infects the respiratory tract, but pulmonary and cardiac complications occur in severe COVID-19. To elucidate molecular mechanisms in the lung and heart, we conducted paired experiments in human stem cell-derived lung alveolar type II (AT2) epithelial cell and cardiac cultures infected with SARS-CoV-2. With CRISPR- Cas9 mediated knock-out of ACE2, we demonstrated that angiotensin converting enzyme 2 (ACE2) was essential for SARS-CoV-2 infection of both cell types but further processing in lung cells required TMPRSS2 while cardiac cells required the endosomal pathway.

View Article and Find Full Text PDF

Trafficking regulator of GLUT4-1, TRARG1, positively regulates insulin-stimulated GLUT4 trafficking and insulin sensitivity. However, the mechanism(s) by which this occurs remain(s) unclear. Using biochemical and mass spectrometry analyses we found that TRARG1 is dephosphorylated in response to insulin in a PI3K/Akt-dependent manner and is a novel substrate for GSK3.

View Article and Find Full Text PDF

Cells respond to changing nutrient environments by adjusting the abundance of surface nutrient transporters and receptors. This can be achieved by modulating ubiquitin-dependent endocytosis, which in part is regulated by the NEDD4 family of E3 ligases. Here we report novel regulation of Pub1, a fission yeast member of the NEDD4-family of E3 ligases.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) released from non-small cell lung cancer (NSCLC) cells are known to promote cancer progression. However, it remains unclear how EVs from various NSCLC cells differ in their secretion profile and their ability to promote phenotypic changes in non-tumorigenic cells. Here, we performed a comparative analysis of EV release from non-tumorigenic cells (HBEC/BEAS-2B) and several NSCLC cell lines (A549, H460, H358, SKMES, and Calu6) and evaluated the potential impact of NSCLC EVs, including EV-encapsulated RNA (EV-RNA), in driving invasion and epithelial barrier impairment in HBEC/BEAS-2B cells.

View Article and Find Full Text PDF

Protein phosphorylation dynamically integrates environmental and cellular information to control biological processes. Identifying functional phosphorylation amongst the thousands of phosphosites regulated by a perturbation at a global scale is a major challenge. Here we introduce 'personalized phosphoproteomics', a combination of experimental and computational analyses to link signaling with biological function by utilizing human phenotypic variance.

View Article and Find Full Text PDF

Pancreatic islets are essential for maintaining physiological blood glucose levels, and declining islet function is a hallmark of type 2 diabetes. We employ mass spectrometry-based proteomics to systematically analyze islets from 9 genetic or diet-induced mouse models representing a broad cross-section of metabolic health. Quantifying the islet proteome to a depth of >11,500 proteins, this study represents the most detailed analysis of mouse islet proteins to date.

View Article and Find Full Text PDF

The phosphoinositide 3-kinase (PI3K)-Akt network is tightly controlled by feedback mechanisms that regulate signal flow and ensure signal fidelity. A rapid overshoot in insulin-stimulated recruitment of Akt to the plasma membrane has previously been reported, which is indicative of negative feedback operating on acute timescales. Here, we show that Akt itself engages this negative feedback by phosphorylating insulin receptor substrate (IRS) 1 and 2 on a number of residues.

View Article and Find Full Text PDF

MaxDIA is a software platform for analyzing data-independent acquisition (DIA) proteomics data within the MaxQuant software environment. Using spectral libraries, MaxDIA achieves deep proteome coverage with substantially better coefficients of variation in protein quantification than other software. MaxDIA is equipped with accurate false discovery rate (FDR) estimates on both library-to-DIA match and protein levels, including when using whole-proteome predicted spectral libraries.

View Article and Find Full Text PDF

The selective and efficient capture of phosphopeptides is critical for comprehensive and in-depth phosphoproteome analysis. Here we report a new switchable two-dimensional (2D) supramolecular polymer that serves as an ideal platform for the enrichment of phosphopeptides. A well-defined, positively charged metallacycle incorporated into the polymer endows the resultant polymer with a high affinity for phosphopeptides.

View Article and Find Full Text PDF

Both tumour suppressive and oncogenic functions have been reported for dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A). Herein, we performed a detailed investigation to delineate the role of DYRK1A in glioblastoma. Our phosphoproteomic and mechanistic studies show that DYRK1A induces degradation of cyclin B by phosphorylating CDC23, which is necessary for the function of the anaphase-promoting complex, a ubiquitin ligase that degrades mitotic proteins.

View Article and Find Full Text PDF

The mechanistic target of rapamycin complex 1 (mTORC1) is an important regulator of cellular metabolism that is commonly hyperactivated in cancer. Recent cancer genome screens have identified multiple mutations in Ras-homolog enriched in brain (Rheb), the primary activator of mTORC1 that might act as driver oncogenes by causing hyperactivation of mTORC1. Here, we show that a number of recurrently occurring Rheb mutants drive hyperactive mTORC1 signalling through differing levels of insensitivity to the primary inactivator of Rheb, tuberous sclerosis complex.

View Article and Find Full Text PDF