Publications by authors named "Sean Hoban"

National, subnational, and supranational entities are creating biodiversity strategy and action plans (BSAPs) to develop concrete commitments and actions to curb biodiversity loss, meet international obligations, and achieve a society in harmony with nature. In light of policymakers' increasing recognition of genetic diversity in species and ecosystem adaptation and resilience, this article provides an overview of how BSAPs can incorporate species' genetic diversity. We focus on three areas: setting targets; committing to actions, policies, and programs; and monitoring and reporting.

View Article and Find Full Text PDF

Mitigating loss of genetic diversity is a major global biodiversity challenge. To meet recent international commitments to maintain genetic diversity within species, we need to understand relationships between threats, conservation management and genetic diversity change. Here we conduct a global analysis of genetic diversity change via meta-analysis of all available temporal measures of genetic diversity from more than three decades of research.

View Article and Find Full Text PDF

Effective population size () is one of the most important parameters in evolutionary biology, as it is linked to the long-term survival capability of species. Therefore, greatly interests conservation geneticists, but it is also very relevant to policymakers, managers, and conservation practitioners. Molecular methods to estimate rely on various assumptions, including no immigration, panmixia, random sampling, absence of spatial genetic structure, and/or mutation-drift equilibrium.

View Article and Find Full Text PDF

Under the recently adopted Kunming-Montreal Global Biodiversity Framework, 196 Parties committed to reporting the status of genetic diversity for all species. To facilitate reporting, three genetic diversity indicators were developed, two of which focus on processes contributing to genetic diversity conservation: maintaining genetically distinct populations and ensuring populations are large enough to maintain genetic diversity. The major advantage of these indicators is that they can be estimated with or without DNA-based data.

View Article and Find Full Text PDF

Premise: In this study, we use simulations to determine how pollen flow and sampling constraints can influence the genetic conservation found in seed collections.

Methods: We simulated genotypes of parental individuals and crossed the parentals based on three different ranges of pollen flow (panmictic, limited, and highly limited) to create new seed sets for sampling. We tested a variety of sampling scenarios modeled on those occurring in nature and calculated the proportion of alleles conserved in each scenario.

View Article and Find Full Text PDF

Strong gene flow from outcrossing relatives tends to blur species boundaries, while divergent ecological selection can counteract gene flow. To better understand how these two forces affect the maintenance of species boundaries, we focused on a species complex including a rare species, maple-leaf oak (Quercus acerifolia), which is found in only four disjunct ridges in Arkansas. Its limited range and geographic proximity to co-occurring close relatives create the possibility for genetic swamping.

View Article and Find Full Text PDF

Genetic and genomic data are collected for a vast array of scientific and applied purposes. Despite mandates for public archiving, data are typically used only by the generating authors. The reuse of genetic and genomic datasets remains uncommon because it is difficult, if not impossible, due to non-standard archiving practices and lack of contextual metadata.

View Article and Find Full Text PDF

Plant collections held by botanic gardens and arboreta are key components of ex situ conservation. Maintaining genetic diversity in such collections allows them to be used as resources for supplementing wild populations. However, most recommended minimum sample sizes for sufficient ex situ genetic diversity are based on microsatellite markers, and it remains unknown whether these sample sizes remain valid in light of more recently developed next-generation sequencing (NGS) approaches.

View Article and Find Full Text PDF

Genetic monitoring of populations currently attracts interest in the context of the Convention on Biological Diversity but needs long-term planning and investments. However, genetic diversity has been largely neglected in biodiversity monitoring, and when addressed, it is treated separately, detached from other conservation issues, such as habitat alteration due to climate change. We report an accounting of efforts to monitor population genetic diversity in Europe (genetic monitoring effort, GME), the evaluation of which can help guide future capacity building and collaboration towards areas most in need of expanded monitoring.

View Article and Find Full Text PDF

The Kunming-Montreal Global Biodiversity Framework was adopted by parties to the Convention on Biological Diversity in December 2022. The aftermath of these negotiations provides an opportunity to draw lessons as to how ecological and evolutionary science can more effectively inform policy. We examined key challenges that limit effective engagement by scientists in the biodiversity policy process, drawing parallels with analogous challenges within global climate negotiations.

View Article and Find Full Text PDF
Article Synopsis
  • Advances in affordable third-generation sequencing and bioinformatics allow for better conservation efforts by enabling the sequencing and analysis of endangered species like Juglans cinerea (butternut walnut).
  • Butternut is endangered primarily due to a deadly fungus (Ophiognomonia clavigignenti-juglandacearum) that damages the tree and leads to its decline, emphasizing the need for conservation because of its ecological and cultural importance.
  • The study includes the first reference genome for Juglans cinerea, created using advanced sequencing techniques, revealing insights into its genetic structure and challenges like reduced gene families linked to stress responses.
View Article and Find Full Text PDF

Genetic biodiversity is rapidly gaining attention in global conservation policy. However, for almost all species, conservation relevant, population-level genetic data are lacking, limiting the extent to which genetic diversity can be used for conservation policy and decision-making. Macrogenetics is an emerging discipline that explores the patterns and processes underlying population genetic composition at broad taxonomic and spatial scales by aggregating and reanalyzing thousands of published genetic datasets.

View Article and Find Full Text PDF

The International Union for Conservation of Nature (IUCN) Red List is an important and widely used tool for conservation assessment. The IUCN uses information about a species' range, population size, habitat quality and fragmentation levels, and trends in abundance to assess extinction risk. Genetic diversity is not considered, although it affects extinction risk.

View Article and Find Full Text PDF
Article Synopsis
  • Genetic diversity is essential for the survival of both people and nature, especially in a changing environment.
  • Recent commitments under the Convention on Biological Diversity have become more ambitious in conserving this diversity as part of the draft global biodiversity framework.
  • The article discusses how goals have evolved, what improvements are needed, and emphasizes the importance of national strategies and effective indicators for monitoring and managing genetic diversity.
View Article and Find Full Text PDF

Understanding the contribution of neutral and adaptive evolutionary processes to population differentiation is often necessary for better informed management and conservation of rare species. In this study, we focused on Pinus torreyana Parry (Torrey pine), one of the world's rarest pines, endemic to one island and one mainland population in California. Small population size, low genetic diversity, and susceptibility to abiotic and biotic stresses suggest Torrey pine may benefit from interpopulation genetic rescue to preserve the species' evolutionary potential.

View Article and Find Full Text PDF

Although the genetic diversity and structure of in situ populations has been investigated in thousands of studies, the genetic composition of ex situ plant populations has rarely been studied. A better understanding of how much genetic diversity is conserved ex situ, how it is distributed among locations (e.g.

View Article and Find Full Text PDF
Article Synopsis
  • * The Group on Earth Observations Biodiversity Observation Network (GEO BON) developed Essential Biodiversity Variables (EBVs), which are key metrics to standardize biodiversity data and help evaluate geographical distribution and changes over time.
  • * The text focuses on implementing Genetic Composition EBVs, assessing genetic variation within species, and proposes four specific Genetic EBVs while discussing their relevance and the processes needed for effective data generation and archiving.
View Article and Find Full Text PDF

Crop diversity underpins the productivity, resilience and adaptive capacity of agriculture. Loss of this diversity, termed crop genetic erosion, is therefore concerning. While alarms regarding evident declines in crop diversity have been raised for over a century, the magnitude, trajectory, drivers and significance of these losses remain insufficiently understood.

View Article and Find Full Text PDF

Global conservation policy and action have largely neglected protecting and monitoring genetic diversity-one of the three main pillars of biodiversity. Genetic diversity (diversity within species) underlies species' adaptation and survival, ecosystem resilience, and societal innovation. The low priority given to genetic diversity has largely been due to knowledge gaps in key areas, including the importance of genetic diversity and the trends in genetic diversity change; the perceived high expense and low availability and the scattered nature of genetic data; and complicated concepts and information that are inaccessible to policymakers.

View Article and Find Full Text PDF

The rapidly emerging field of macrogenetics focuses on analysing publicly accessible genetic datasets from thousands of species to explore large-scale patterns and predictors of intraspecific genetic variation. Facilitated by advances in evolutionary biology, technology, data infrastructure, statistics and open science, macrogenetics addresses core evolutionary hypotheses (such as disentangling environmental and life-history effects on genetic variation) with a global focus. Yet, there are important, often overlooked, limitations to this approach and best practices need to be considered and adopted if macrogenetics is to continue its exciting trajectory and reach its full potential in fields such as biodiversity monitoring and conservation.

View Article and Find Full Text PDF

The health of the world's oceans is intrinsically linked to the biodiversity of the ecosystems they sustain. The importance of protecting and maintaining ocean biodiversity has been affirmed through the setting of the UN Sustainable Development Goal 14 to conserve and sustainably use the ocean for society's continuing needs. The decade beginning 2021-2030 has additionally been declared as the UN Decade of Ocean Science for Sustainable Development.

View Article and Find Full Text PDF

Millette et al. (Ecology Letters, 2020, 23:55-67) reported no consistent worldwide anthropogenic effects on animal genetic diversity using repurposed mitochondrial DNA sequences. We reexamine data from this study, describe genetic marker and scale limitations which might lead to misinterpretations with conservation implications, and provide advice to improve future macrogenetic studies.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session6h010loo96djpsr2li43f5ivvanfuvlj): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once