Publications by authors named "Sean Germain"

Introduction: The primary objectives of this study were to evaluate contractile and non-contractile content of lower leg muscles of boys with Duchenne muscular dystrophy (DMD) and determine the relationships between non-contractile content and functional abilities.

Methods: Lower leg muscles of thirty-two boys with DMD and sixteen age matched unaffected controls were imaged. Non-contractile content, contractile cross sectional area and non-contractile cross sectional area of lower leg muscles (tibialis anterior, extensor digitorum longus, peroneal, medial gastrocnemius and soleus) were assessed by magnetic resonance imaging (MRI).

View Article and Find Full Text PDF

The purpose of this study was to use proton magnetic resonance spectroscopy to assess intramuscular lipid and metabolites of lower leg muscles in boys with Duchenne muscular dystrophy (DMD) and determine its relationship with strength and functional ability. Spectroscopic measurements were obtained from four muscles of the lower leg in 25 boys with DMD (9.2±3.

View Article and Find Full Text PDF

The purpose of this study was to assess the contractile and non-contractile content in thigh muscles of patients with Duchenne muscular dystrophy (DMD) and determine the relationship with functional abilities. Magnetic resonance images of the thigh were acquired in 28 boys with DMD and 10 unaffected boys. Muscle strength, timed functional tests, and the Brookes Lower Extremity scale were also assessed.

View Article and Find Full Text PDF

Introduction: In this study we compared the effects of downhill or horizontal treadmill running on the magnetic resonance imaging (MRI) transverse relaxation time constant (T(2)) in mdx mice.

Methods: Mice underwent either downhill (n = 11 mdx, n = 6 controls) or horizontal running (n = 9, mdx only) on a treadmill. MRI was conducted prior to exercise, immediately afterward (∽20 minutes), and then 24 and 48 hours after exercise.

View Article and Find Full Text PDF

Objective: To examine the relationship between lower-extremity muscle cross-sectional area, muscle strength, specific torque, and age in ambulatory boys with Duchenne muscular dystrophy (DMD) compared with controls.

Design: Observational cross-sectional study.

Setting: University research setting.

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is a life-threatening disease that results in right ventricular failure. 5-((4-(6-Chlorothieno[2,3-d]pyrimidin-4-ylamino)piperidin-1-yl)methyl)-2-fluorobenzonitrile monofumarate (PRX-08066) is a selective 5-hydroxytryptamine receptor 2B (5-HT2BR) antagonist that causes selective vasodilation of pulmonary arteries. In the current study, the effects of PRX-08066 were assessed by using the monocrotaline (MCT)-induced PAH rat model.

View Article and Find Full Text PDF

Glycogen storage disease type Ia (GSDIa; von Gierke disease; MIM 232200) is caused by a deficiency in glucose-6-phosphatase-alpha. Patients with GSDIa are unable to maintain glucose homeostasis and suffer from severe hypoglycemia, hepatomegaly, hyperlipidemia, hyperuricemia, and lactic acidosis. The canine model of GSDIa is naturally occurring and recapitulates almost all aspects of the human form of disease.

View Article and Find Full Text PDF

Pompe disease is a muscular dystrophy that results in respiratory insufficiency. We characterized the outcomes of targeted delivery of recombinant adeno-associated virus serotype 1 (rAAV2/1) vector to diaphragms of Pompe mice with varying stages of disease progression. We observed significant improvement in diaphragm contractile strength in mice treated at 3 months of age that is sustained at least for 1 year and enhanced contractile strength in mice treated at 9 and 21 months of age, measured 3 months post-treatment.

View Article and Find Full Text PDF

Mutations in the non-lysosomal cysteine protease calpain-3 cause autosomal recessive limb girdle muscular dystrophy. Pathological mechanisms occurring in this disease have not yet been elucidated. Here, we report both morphological and biochemical evidence of mitochondrial abnormalities in calpain-3 knockout (C3KO) muscles, including irregular ultrastructure and distribution of mitochondria.

View Article and Find Full Text PDF

Recombinant adeno-associated viral vectors pseudotyped with serotype 5 and 8 capsids (AAV5 and AAV8) have been shown to be efficient gene transfer reagents for the liver. We have produced AAV5 and AAV8 vectors that express mouse short-chain acyl-CoA dehydrogenase (mSCAD) cDNA under the transcriptional control of the cytomegalovirus-chicken beta-actin hybrid promoter. We hypothesized that these vectors would produce sufficient hepatocyte transduction (after administration via the portal vein) and thus sufficient SCAD enzyme to correct the phenotype observed in the SCAD-deficient (BALB/cByJ) mouse, which includes elevated blood butyrylcarnitine and hepatic steatosis.

View Article and Find Full Text PDF

Limb girdle muscular dystrophy (LGMD) describes a group of inherited diseases resulting from mutations in genes encoding proteins involved in maintaining skeletal muscle membrane stability. LGMD type-2D is caused by mutations in alpha-sarcoglycan (sgca). Here we describe muscle-specific gene delivery of the human sgca gene into dystrophic muscle using an adeno-associated virus 1 (AAV1) capsid and creatine kinase promoter.

View Article and Find Full Text PDF

Pompe disease is caused by a lack of functional lysosomal acid alpha-glucosidase (GAA) and can ultimately lead to fatal hypertrophic cardiomyopathy and respiratory insufficiency. Previously, we demonstrated the ability of recombinant adeno-associated virus serotype 1 (rAAV2/1) vector to restore the therapeutic levels of cardiac and diaphragmatic GAA enzymatic activity in vivo in a mouse model of Pompe disease. We have further characterized cardiac and respiratory function in rAAV2/1-treated animals 1 year post-treatment.

View Article and Find Full Text PDF

Background: Magnetic resonance imaging (MRI) of magnetically labeled stem cells is a non-invasive approach that can provide images with high spatial resolution. We evaluated the ability of a commercially available, Food and Drug Administration (FDA) approved contrast agent to allow the monitoring of myoblast transplants in the rodent heart.

Methods And Results: Primary rat myoblasts were efficiently labeled by incubation with ferumoxide-polycation complexes and labeled cells retained their normal capacity to generate mature myotubes.

View Article and Find Full Text PDF