Publications by authors named "Sean Friday"

In rheumatoid arthritis, the synovium exhibits fibroblast hyperplasia and dynamic infiltration of activated T cells. Interaction between rheumatoid arthritis synovial fibroblasts (RASF) and T cell subsets such as Th17 cells can stimulate RASF to express IL-6, IL-8, CCL20, and other proinflammatory mediators of joint destruction. PLD enzymes specifically cleave phosphatidyl choline (PC) producing phosphatidic acid (PA) and choline.

View Article and Find Full Text PDF

Background: Inhibitor of DNA binding 1 (Id1) is a nuclear protein containing a basic helix-loop-helix (bHLH) domain that regulates cell growth by selective binding and prevention of gene transcription. Sources of Id1 production in rheumatoid arthritis synovial tissue (RA ST) and its range of functional effects in RA remain to be clarified.

Methods: We analyzed Id1 produced from synovial fibroblasts and endothelial cells (ECs) with histology and real-time polymerase chain reaction (RT-PCR).

View Article and Find Full Text PDF

The early events leading to the development of rheumatoid arthritis (RA) remain unclear, but formation of autoantibodies to citrullinated protein antigens (ACPAs) is considered a key pathogenic event. Neutrophils isolated from patients with various autoimmune diseases display enhanced neutrophil extracellular trap (NET) formation, a phenomenon that exposes autoantigens in the context of immunostimulatory molecules. We investigated whether aberrant NETosis occurs in RA, determined its triggers, and examined its deleterious inflammatory consequences.

View Article and Find Full Text PDF

Two histidines are known to be essential for zinc potentiation of rat P2X2 receptors, but the chemistry of zinc coordination would suggest that other residues also participate in this zinc-binding site. There is also a second lower affinity zinc-binding site in P2X2 receptors whose constituents are unknown. To assess whether the extracellular acidic residues of the P2X2 receptor contribute to zinc potentiation or inhibition, site-directed mutagenesis was used to produce alanine substitutions at each extracellular glutamate or aspartate.

View Article and Find Full Text PDF