A laser-assisted see-through technology is developed to locate sound sources inside a structure and to analyze the interior sound field. Six lasers were employed to measure simultaneously the normal velocities on the exterior surface. These input data were used to locate sound sources inside a solid structure using a passive sonic detection and ranging algorithm, and then to reconstruct the interior sound field using the Helmholtz equation least squares method, and finally to observe the changes of the interior sound field over time through computer tomography.
View Article and Find Full Text PDFObjectives: To develop a novel device to predict systolic and diastolic blood pressure based on measured heart sound signals and evaluate its accuracy in comparison to intra-arterial blood pressure readings.
Study Design: Prospective, observational pilot study.
Setting: PICU.
J Acoust Soc Am
July 2016
This paper presents a theoretical study on "seeing" through an elastic structure to uncover the root cause of sound and vibration by using nearfield acoustical holography (NAH) and normal modes expansion. This approach is of generality because vibro-acoustic responses on the surface of a vibrating structure can always be reconstructed, exactly or approximately. With these vibro-acoustic responses, excitation forces acting on the structure can always be determined, analytically or numerically, given any set of boundary conditions.
View Article and Find Full Text PDFThe Helmholtz equation least squares (HELS)-based nearfield acoustical holography (NAH) is utilized to analyze panel acoustic contributions toward the acoustic field inside the interior region of an automobile. Specifically, the acoustic power flows from individual panels are reconstructed, and relative contributions to sound pressure level and spectrum at any point of interest are calculated. Results demonstrate that by correlating the acoustic power flows from individual panels to the field acoustic pressure, one can correctly locate the panel allowing the most acoustic energy transmission into the vehicle interior.
View Article and Find Full Text PDFThis paper presents the general formulations for reconstructing the transient acoustic field generated by an arbitrary object with a uniformly distributed surface velocity in free space. These formulations are derived from the Kirchhoff-Helmholtz integral theory that correlates the transient acoustic pressure at any field point to those on the source surface. For a class of acoustic radiation problems involving an arbitrarily oscillating object with a uniformly distributed surface velocity, for example, a loudspeaker membrane, the normal surface velocity is frequency dependent but is spatially invariant.
View Article and Find Full Text PDFA passive sonic detection and ranging (SODAR) technology is developed to locate sound sources that emit arbitrarily time-dependent signals in a typical environment encountered in practice in real time. This passive SODAR is built on a comprehensive approach including the pre-processing of input data to enhance the signal-to-noise ratio, acoustic modeling of sound radiation from a point source, iterative triangulations, and post-processing of output data to ensure the accuracy in source localization. Moreover, it employs an optimization process to extend the source detection range and improve the source localization accuracy in a highly non-ideal environment that involves a large number of unspecified reflected and diffracted sound waves.
View Article and Find Full Text PDFJ Acoust Soc Am
August 2012
This paper presents theoretical models for blind sound source localization and separation of the signals emitted by arbitrary point sources in free space. Source localizations are achieved by a model based approach that accounts for the spherical spreading of an acoustic wave and utilizes an iterative triangulation, based on the signals measured by a three-dimensional microphone array. Once source locations are determined, the source signals are separated by using the point source separation (PSS) method, which is valid for all types of signals, including harmonic, continuous, transient, random, narrowband and broadband.
View Article and Find Full Text PDFThis paper presents helpful guidelines and strategies for reconstructing the vibro-acoustic quantities on a highly non-spherical surface by using the Helmholtz equation least squares (HELS). This study highlights that a computationally simple code based on the spherical wave functions can produce an accurate reconstruction of the acoustic pressure and normal surface velocity on planar surfaces. The key is to select the optimal origin of the coordinate system behind the planar surface, choose a target structural wavelength to be reconstructed, set an appropriate stand-off distance and microphone spacing, use a hybrid regularization scheme to determine the optimal number of the expansion functions, etc.
View Article and Find Full Text PDFThis paper presents experimental validation of an alternate integral-formulation method (AIM) for predicting acoustic radiation from an arbitrary structure based on the particle velocities specified on a hypothetical surface enclosing the target source. Both the normal and tangential components of the particle velocity on this hypothetical surface are measured and taken as the input to AIM codes to predict the acoustic pressures in both exterior and interior regions. The results obtained are compared with the benchmark values measured by microphones at the same locations.
View Article and Find Full Text PDFJ Acoust Soc Am
August 2010
This paper presents a method for locating arbitrarily time-dependent acoustic sources in a free field in real time by using only four microphones. This method is capable of handling a wide variety of acoustic signals, including broadband, narrowband, impulsive, and continuous sound over the entire audible frequency range, produced by multiple sources in three dimensional (3D) space. Locations of acoustic sources are indicated by the Cartesian coordinates.
View Article and Find Full Text PDFThe vibroacoustic responses of a highly nonspherical vibrating object are reconstructed using Helmholtz equation least-squares (HELS) method. The objectives of this study are to examine the accuracy of reconstruction and the impacts of various parameters involved in reconstruction using HELS. The test object is a simply supported and baffled thin plate.
View Article and Find Full Text PDFJ Acoust Soc Am
November 2008
This paper presents an overview of the acoustic imaging methods developed over the past three decades that enable one to reconstruct all acoustic quantities based on the acoustic pressure measurements taken around a target source at close distances. One such method that has received the most attention is known as near-field acoustical holography (NAH). The original NAH relies on Fourier transforms that are suitable for a surface containing a level of constant coordinate in a source-free region.
View Article and Find Full Text PDFTransient near-field acoustical holography (NAH) formulation is derived from the Helmholtz equation least squares (HELS) method to reconstruct acoustic radiation from a spherical surface subject to transient excitations in a free field. To facilitate derivations of temporal solutions, we make use of the Laplace transform and expansion in terms of the spherical Hankel functions and spherical harmonics, with their coefficients settled by solving a system of equations obtained by matching an assumed-form solution to the measured acoustic pressure. To derive a general form of solution for a temporal kernel, we replace the spherical Hankel functions and their derivatives by polynomials, recast infinite integrals in the inverse Laplace transform as contour integrals in a complex s-plane, and evaluate it via the residue theorem.
View Article and Find Full Text PDFJ Acoust Soc Am
February 2005
This paper examines the performance of Helmholtz equation least-squares (HELS) method in reconstructing acoustic radiation from an arbitrary source by using three different expansions, namely, localized spherical waves (LSW), distributed spherical waves (DSW), and distributed point sources (DPS), under the same set of measurements. The reconstructed acoustic pressures are validated against the benchmark data measured at the same locations as reconstruction points for frequencies up to 3275 Hz. Reconstruction is obtained by using Tikhonov regularization or its modification with the regularization parameter selected by error-free parameter-choice methods.
View Article and Find Full Text PDFJ Acoust Soc Am
February 2005
In this paper we examine the accuracy and efficiency of reconstructing the vibroacoustic quantities generated by a vibrating structure in half-space by using hybrid near-field acoustic holography (NAH) and modified Helmholtz equation least squares (HELS) formulations. In hybrid NAH, we combine modified HELS with an inverse boundary element method (IBEM) to reconstruct a vibroacoustic field. The main advantage of this approach is that the majority of the input data can be regenerated but not measured, thus the efficiency is greatly enhanced.
View Article and Find Full Text PDFHybrid near-field acoustical holography (NAH) is developed for reconstructing acoustic radiation from an arbitrary object in a cost-effective manner. This hybrid NAH is derived from a modified Helmholtz equation least squares (HELS) formula that expands the acoustic pressure in terms of outgoing and incoming waves. The expansion coefficients are determined by solving an overdetermined linear system of equations obtained by matching the assumed-form solution to measured acoustic pressures through the least squares.
View Article and Find Full Text PDFA combined Helmholtz equation-least squares (CHELS) method is developed for reconstructing acoustic radiation from an arbitrary object. This method combines the advantages of both the HELS method and the Helmholtz integral theory based near-field acoustic holography (NAH). As such it allows for reconstruction of the acoustic field radiated from an arbitrary object with relatively few measurements, thus significantly enhancing the reconstruction efficiency.
View Article and Find Full Text PDF