Dielectric particles flowing through a microfluidic channel over a set of coplanar electrodes can be simultaneously capacitively detected and dielectrophoretically (DEP) actuated when the high (1.45 GHz) and low (100 kHz-20 MHz) frequency electromagnetic fields are concurrently applied through the same set of electrodes. Assuming a simple model in which the only forces acting upon the particles are apparent gravity, hydrodynamic lift, DEP force, and fluid drag, actuated particle trajectories can be obtained as numerical solutions of the equations of motion.
View Article and Find Full Text PDFImmune cell migration is a fundamental process that enables immunosurveillance and immune responses. Understanding the mechanism of immune cell migration is not only of importance to the biology of cells, but also has high relevance to cell trafficking mediated physiological processes and diseases such as embryogenesis, wound healing, autoimmune diseases and cancers. In addition to the well-known chemical concentration gradient based guiding mechanism (i.
View Article and Find Full Text PDFIn biomedical applications ranging from the study of pathogen invasion to drug efficacy assays, there is a growing need to develop minimally invasive techniques for single-cell analysis. This has inspired researchers to develop optical, electrical, microelectromechanical and microfluidic devices for exploring phenomena at the single-cell level. In this work, we demonstrate an electrical approach for single-cell analysis wherein a 1.
View Article and Find Full Text PDF