Modifications to highly conserved developmental gene regulatory networks are thought to underlie morphological diversification in evolution and contribute to human congenital malformations. Relationships between gene expression and morphology have been extensively investigated in the limb, where most of the evidence for alterations to gene regulation in development consists of pre-transcriptional mechanisms that affect expression levels, such as epigenetic alterations to regulatory sequences and changes to cis-regulatory elements. Here we report evidence that alternative splicing (AS), a post-transcriptional process that modifies and diversifies mRNA transcripts, is dynamic during limb development in two mammalian species.
View Article and Find Full Text PDFBackground Context: Neuroforaminal stenosis is one of the key factors causing clinical symptoms in patients with cervical radiculopathy. Previous quantitative studies on the neuroforaminal dimensions have focused on measurements in a static position. Little is known about dimensional changes of the neuroforamina in the cervical spine during functional dynamic neck motion under physiological loading conditions.
View Article and Find Full Text PDFLimited research exists on T2-mapping techniques for cervical intervertebral discs and its potential clinical utility. The objective of this research was to investigate the in-vivo T2-relaxation times of cervical discs, including C2-C3 through C7-T1. Ten asymptomatic subjects were imaged using a 3.
View Article and Find Full Text PDFBackground Context: Previous studies have reported position-dependent changes of the lumbar intervertebral foramen (LIVF) dimensions at different static flexion-extension postures. However, the changes of the LIVF dimensions during dynamic body motion have not been reported.
Purpose: The objective of this study was to investigate the in vivo dimensions of the LIVF during a dynamic weight-lifting activity.
Recent biomechanics studies have revealed distinct kinematic behavior of different lumbar segments. The mechanisms behind these segment-specific biomechanical features are unknown. This study investigated the in vivo geometric characteristics of human lumbar intervertebral discs.
View Article and Find Full Text PDFPurpose: Many studies have reported on the segmental motion range of the lumbar spine using various in vitro and in vivo experimental designs. However, the in vivo weightbearing dynamic motion characteristics of the L4-5 and L5-S1 motion segments are still not clearly described in literature. This study investigated in vivo motion of the lumbar spine during a weight-lifting activity.
View Article and Find Full Text PDF