Publications by authors named "Sean D Reid"

Otitis media is a prominent disease among children. Previous literature indicates that otitis media is a polymicrobial disease, with Haemophilus influenzae, Streptococcus pneumoniae, Alloiococcus otitidis and Moraxella catarrhalis being the most commonly associated bacterial pathogens. Recent literature suggests that introduction of pneumococcal conjugate vaccines has had an effect on the etiology of otitis media.

View Article and Find Full Text PDF

Unlabelled: Infection with Streptococcus pyogenes is associated with a breadth of clinical manifestations ranging from mild pharyngitis to severe necrotizing fasciitis. Elevated levels of intracellular copper are highly toxic to this bacterium, and thus, the microbe must tightly regulate the level of this metal ion by one or more mechanisms, which have, to date, not been clearly defined. In this study, we have identified two virulence mechanisms by which S.

View Article and Find Full Text PDF

Background: Because previous studies have indicated that otitis media may be a polymicrobial disease, we prospectively analyzed middle ear effusions of children undergoing tympanostomy tube placement with multiplex polymerase chain reaction for four otopathogens.

Methods: Middle ear effusions from 207 children undergoing routine tympanostomy tube placement were collected and were classified by the surgeon as acute otitis media (AOM) for purulent effusions and as otitis media with effusion (OME) for non-purulent effusions. DNA was isolated from these samples and analyzed with multiplex polymerase chain reaction for Haemophilus influenzae, Streptococcus pneumoniae, Alloiococcus otitidis, and Moraxella catarrhalis.

View Article and Find Full Text PDF

Background: Group A Streptococcus (GAS) causes acute tonsillopharyngitis in children, and approximately 20% of this population are chronic carriers of GAS. Antibacterial therapy has previously been shown to be insufficient at clearing GAS carriage. Bacterial biofilms are a surface-attached bacterial community that is encased in a matrix of extracellular polymeric substances.

View Article and Find Full Text PDF

Background: Waterless antiseptic surgical hand scrub (1% chlorhexidine gluconate and 61% ethyl alcohol, Avagard™; 3M Health Care, St. Paul, MN), alcohol-only cleanser (62% ethyl alcohol), and traditional surgical scrub (5-minute scrub with 4% chlorhexidine soap using a sterile scrub brush with water) are techniques used for hand cleansing and disinfection. We hypothesized that alcohol-only cleanser and waterless antiseptic scrub (Avagard) would be as effective as a traditional surgical scrub for hand cleansing before placement of central venous catheters.

View Article and Find Full Text PDF

Background: Group A Streptococcus (GAS) is a human-specific pathogen responsible for a number of diseases characterized by a wide range of clinical manifestations. During host colonization GAS-cell aggregates or microcolonies are observed in tissues. GAS biofilm, which is an in vitro equivalent of tissue microcolony, has only recently been studied and little is known about the specific surface determinants that aid biofilm formation.

View Article and Find Full Text PDF

Group A Streptococcus (GAS) is a human specific pathogen capable of causing both mild infections and severe invasive disease. We and others have shown that GAS is able to form biofilms during infection. That is to say, they form a three-dimensional, surface attached structure consisting of bacteria and a multi-component extracellular matrix.

View Article and Find Full Text PDF

Group A Streptococcus (GAS) is a Gram-positive human pathogen best known for causing pharyngeal and mild skin infections. However, in the 1980's there was an increase in severe GAS infections including cellulitis and deeper tissue infections like necrotizing fasciitis. Particularly striking about this elevation in the incidence of severe disease was that those most often affected were previously healthy individuals.

View Article and Find Full Text PDF

Macrophages regulate immune responses during many viral infections, and can be a major determinant of pathogenesis, virus replication and immune response to infection. Here, we have addressed the question of the outcome of infection of primary human macrophages with parainfluenza virus 5 (PIV5) and a PIV5 mutant (P/V-CPI-) that is unable to counteract interferon (IFN) responses. In cultures of naïve monocyte-derived macrophages (MDMs), WT PIV5 established a highly productive infection, whereas the P/V-CPI- mutant was restricted for replication in MDMs by IFN-beta.

View Article and Find Full Text PDF

Background: Group A Streptococcus (GAS) is a Gram-positive human pathogen that is capable of causing a wide spectrum of human disease. Thus, the organism has evolved to colonize a number of physiologically distinct host sites. One such mechanism to aid colonization is the formation of a biofilm.

View Article and Find Full Text PDF

Group A Streptococcus (GAS) is a common causative agent of pharyngitis, but the role of GAS in otitis media is underappreciated. In this study, we sought to test the hypothesis that GAS colonizes the middle ear and establishes itself in localized, three-dimensional communities representative of biofilms. To test this hypothesis, the middle ears of chinchillas were infected with either a strain of GAS capable of forming biofilms in vitro (MGAS5005) or a strain deficient in biofilm formation due to the lack of the transcriptional regulator Srv (MGAS5005 Δsrv).

View Article and Find Full Text PDF

Bacillithiol (Cys-GlcN-malate, BSH) has recently been identified as a novel low-molecular weight thiol in Bacillus anthracis, Staphylococcus aureus, and several other Gram-positive bacteria lacking glutathione and mycothiol. We have now characterized the first two enzymes for the BSH biosynthetic pathway in B. anthracis, which combine to produce α-d-glucosaminyl l-malate (GlcN-malate) from UDP-GlcNAc and l-malate.

View Article and Find Full Text PDF

CD8(+) T cells play a critical role in the clearance of respiratory pathogens. Thus, it is surprising that functional inactivation of lung effectors has been observed in many models of viral infection. Currently, the molecular defect responsible for the shut-off of function in these cells is unknown.

View Article and Find Full Text PDF

The angiotensin (Ang) type 1 receptor (AT(1)R) is highly expressed on renal nuclei and stimulates reactive oxygen species (ROS). It is not known whether other functional components of the Ang system regulate the nuclear Ang II-AT(1)R ROS pathway. Therefore, we examined the expression of Ang receptors in nuclei isolated from the kidneys of young adult (1.

View Article and Find Full Text PDF

Background: Streptococcus pneumoniae (pneumococcus) causes respiratory and systemic infections that are a major public health problem worldwide. It has been postulated that pneumococci persist in vivo in biofilm communities.

Methods: In this study, we analyzed whether pneumococci form biofilms in vivo, and if so, whether biofilms correlated with bacterial persistence.

View Article and Find Full Text PDF

Recently, biofilms have become a topic of interest in the study of the human pathogen group A Streptococcus (GAS). In this study, we sought to learn more about the make-up of these structures and gain insight into biofilm regulation. Enzymic studies indicated that biofilm formation by GAS strain MGAS5005 required an extracellular protein and DNA component(s).

View Article and Find Full Text PDF

In Bacillus anthracis, the novel type III pantothenate kinase (PanK(Ba); encoded by coaX) catalyzes the first committed step in coenzyme A biosynthesis. We have demonstrated by analyzing the growth characteristics of a conditional coaX mutant that PanK(Ba) is an essential enzyme, thus contributing to its validation as a new antimicrobial target.

View Article and Find Full Text PDF

Group A Streptococcus (GAS) possesses a complex regulatory system enabling the organism to colonize a range of physiologically distinct host sites. Within this network of regulators is the streptococcal regulator of virulence (Srv). Srv is a member of the CRP/FNR family of transcriptional regulators and is most similar to pleiotropic regulatory factor A (PrfA), a positive regulator of virulence in Listeria monocytogenes.

View Article and Find Full Text PDF

Group A Streptococcus is characterized by the ability to cause a diverse number of human infections including pharyngitis, necrotizing fasciitis, toxic shock syndrome, and acute rheumatic fever, yet the regulation of streptococcal genes involved in disease processes and survival in the host is not completely understood. Genome scale analysis has revealed a complex regulatory network including 13 two-component regulatory systems and more than 100 additional putative regulators, the majority of which remain uncharacterized. Among these is the streptococcal regulator of virulence, Srv, the first Group A Streptococcus member of the Crp/Fnr family of transcriptional regulators.

View Article and Find Full Text PDF

Background: Increased levels of macrolide-resistant Streptococcus pyogenes in focal regions of the United States have been reported. The purpose of this study was to determine the antimicrobial susceptibility of a large collection of S. pyogenes isolates from throughout the United States and to elucidate the mechanisms of resistance and genetic relatedness of macrolide-resistant isolates.

View Article and Find Full Text PDF

We have identified a Crp/Fnr-like transcriptional regulator of Streptococcus pyogenes that when inactivated attenuates virulence. The gene, named srv for streptococcal regulator of virulence, encodes a 240-amino-acid protein with 53% amino acid similarity to PrfA, a transcriptional activator of virulence in Listeria monocytogenes.

View Article and Find Full Text PDF

Leucine-rich repeats (LRR) characterize a diverse array of proteins and function to provide a versatile framework for protein-protein interactions. Importantly, each of the bacterial LRR proteins that have been well described, including those of Listeria monocytogenes, Yersinia pestis, and Shigella flexneri, have been implicated in virulence. Here we describe an 87.

View Article and Find Full Text PDF

Recent genomic studies have revealed extensive variation in natural populations of many pathogenic bacteria. However, the evolutionary processes which contribute to much of this variation remain unclear. A previous whole-genome DNA microarray study identified variation at a large chromosomal region (RD13) of Staphylococcus aureus which encodes a family of proteins with homology to staphylococcal and streptococcal superantigens, designated staphylococcal exotoxin-like (SET) proteins.

View Article and Find Full Text PDF

Recently, it was reported that a streptococcal Mac protein (designated Mac(5005)) made by serotype M1 group A Streptococcus (GAS) is a homologue of human CD11b that inhibits opsonophagocytosis and killing of GAS by human polymorphonuclear leukocytes (PMNs) (B. Lei, F. R.

View Article and Find Full Text PDF