Colloidal nanoparticle biosensors capable of on-particle biocatalysis are powerful tools for amplified detection of biomolecules. The development and practical uses of such concentric amplifiers can be complicated because of the on-particle biorecognition that involves varying interfacial factors at the biomolecule-nanoparticle interfaces. Herein, we reason that a nanoparticle biosensor equipped with an in-solution biorecognition element may be better fabricated, predicted, controlled, and performed.
View Article and Find Full Text PDFHerein, we report a bottom-up approach to assemble a series of stochastic DNA walkers capable of probing dynamic interactions occurring at the bio-nano interface. We systematically investigated the impact of varying interfacial factors, including intramolecular interactions, orientation, cooperativity, steric effect, multivalence, and binding hindrance on enzymatic behaviors at the interfaces of spherical nucleic acids. Our mechanistic study has revealed critical roles of various interfacial factors that significantly alter molecular binding and enzymatic behaviors from bulk solutions.
View Article and Find Full Text PDFSingle nucleotide variants (SNVs) are important both clinically and biologically because of their profound biological consequences. Herein, we engineered a nicking endonuclease-powered three dimensional (3D) DNA nanomachine for discriminating SNVs with high sensitivity and specificity. Particularly, we performed a simulation-guided tuning of sequence designs to achieve the optimal trade-off between device efficiency and specificity.
View Article and Find Full Text PDFHerein, we report a DNA nanomachine, built from a DNA-functionalized gold nanoparticle (DNA-AuNP), which moves a DNA walker along a three-dimensional (3-D) DNA-AuNP track and executes the task of releasing payloads. The movement of the DNA walker is powered by a nicking endonuclease that cleaves specific DNA substrates on the track. During the movement, each DNA walker cleaves multiple substrates, resulting in the rapid release of payloads (predesigned DNA sequences and their conjugates).
View Article and Find Full Text PDFKnowledge of trace metal speciation in soil pore waters is important in addressing metal bioavailability and risk assessment of contaminated soils. Numerous analytical methods have been utilized for determining trace metal speciation in aqueous environmental matrixes; however, most of these methods suffer from significant interferences. The Donnan dialysis membrane technique minimizes these interferences and has been used in this study to determine free Zn2+, Cd2+, Cu2+, and Pb2+ activities in pore waters from 15 agricultural and 12 long-term contaminated soils.
View Article and Find Full Text PDF