Publications by authors named "Sean D Lawley"

The imperfect narrow escape problem considers the mean first passage time (MFPT) of a Brownian particle through one of several small, partially reactive traps on an otherwise reflecting boundary within a confining domain. Mathematically, this problem is equivalent to Poisson's equation with mixed Neumann-Robin boundary conditions. Here, we obtain this MFPT in general three-dimensional domains by using strong localized perturbation theory in the small trap limit.

View Article and Find Full Text PDF
Article Synopsis
  • Proteins undergo liquid-liquid phase separation (LLPS) in cells, and recent findings show that this process behaves differently in two-dimensional (2D) versus three-dimensional (3D) environments.
  • The study employs mathematical modeling, using continuous-time Markov chains and chemical reaction network theory, to analyze the factors contributing to these differences in LLPS across dimensions.
  • Key results indicate that the spatial dimension significantly impacts LLPS characteristics, challenging previous notions that primarily attributed differences to varying diffusion coefficients of proteins.
View Article and Find Full Text PDF

Decisions are often made by heterogeneous groups of individuals, each with distinct initial biases and access to information of different quality. We show that in groups of independent agents who accumulate evidence the first to decide are those with the strongest initial biases. Their decisions align with their initial bias, regardless of the underlying truth.

View Article and Find Full Text PDF

A variety of biomedical systems are modeled by networks of deterministic differential equations with stochastic inputs. In some cases, the network output is remarkably constant despite a randomly fluctuating input. In the context of biochemistry and cell biology, chemical reaction networks and multistage processes with this property are called robust.

View Article and Find Full Text PDF

The speed of an exhaustive search can be measured by a cover time, which is defined as the time it takes a random searcher to visit every state in some target set. Cover times have been studied in both the physics and probability literatures, with most prior works focusing on a single searcher. In this paper, we prove an explicit formula for all the moments of the cover time for many searchers on an arbitrary discrete network.

View Article and Find Full Text PDF

Decisions are often made by heterogeneous groups of individuals, each with distinct initial biases and access to information of different quality. We show that in large groups of independent agents who accumulate evidence the first to decide are those with the strongest initial biases. Their decisions align with their initial bias, regardless of the underlying truth.

View Article and Find Full Text PDF

Ovarian aging in women can be described as highly unpredictable within individuals but predictable across large populations. We showed previously that modeling an individual woman's ovarian reserve of primordial follicles using mathematical random walks replicates the natural pattern of growing follicles exiting the reserve. Compiling many simulations yields the observed population distribution of the age at natural menopause (ANM).

View Article and Find Full Text PDF

Medication nonadherence is one of the largest problems in healthcare today, particularly for patients undergoing long-term pharmacotherapy. To combat nonadherence, it is often recommended to prescribe so-called "forgiving" drugs, which maintain their effect despite lapses in patient adherence. Nevertheless, drug forgiveness is difficult to quantify and compare between different drugs.

View Article and Find Full Text PDF

Background: Ovarian tissue cryopreservation has been proven to preserve fertility against gonadotoxic treatments. It has not been clear how this procedure would perform if planned for slowing ovarian aging.

Objective: This study aimed to determine the feasibility of cryopreserving ovarian tissue to extend reproductive life span and delay menopause by autotransplantation near menopause.

View Article and Find Full Text PDF

We determine the full distribution and moments of the first passage time for a wide class of stochastic search processes in the limit of frequent stochastic resetting. Our results apply to any system whose short-time behavior of the search process without resetting can be estimated. In addition to the typical case of exponentially distributed resetting times, we prove our results for a variety of resetting time distributions.

View Article and Find Full Text PDF

Biological events are often initiated when a random "searcher" finds a "target," which is called a first passage time (FPT). In some biological systems involving multiple searchers, an important timescale is the time it takes the slowest searcher(s) to find a target. For example, of the hundreds of thousands of primordial follicles in a woman's ovarian reserve, it is the slowest to leave that trigger the onset of menopause.

View Article and Find Full Text PDF

Trapping diffusive particles at surfaces is a key step in many systems in chemical and biological physics. Trapping often occurs via reactive patches on the surface and/or the particle. The theory of boundary homogenization has been used in many prior works to estimate the effective trapping rate for such a system in the case that either (i) the surface is patchy and the particle is uniformly reactive or (ii) the particle is patchy and the surface is uniformly reactive.

View Article and Find Full Text PDF

Women are born with hundreds of thousands to over a million primordial ovarian follicles (PFs) in their ovarian reserve. However, only a few hundred PFs will ever ovulate and produce a mature egg. Why are hundreds of thousands of PFs endowed around the time of birth when far fewer follicles are required for ongoing ovarian endocrine function and only a few hundred will survive to ovulate? Recent experimental, bioinformatics, and mathematical analyses support the hypothesis that PF growth activation (PFGA) is inherently stochastic.

View Article and Find Full Text PDF

Fluorescence recovery after photobleaching (FRAP) is a widely used biological experiment to study the kinetics of molecules that react and move randomly. Since the development of FRAP in the 1970s, many reaction-diffusion models have been used to interpret FRAP data. However, intracellular molecules are widely observed to move by anomalous subdiffusion instead of normal diffusion.

View Article and Find Full Text PDF

Mechanism(s) that control whether individual human primordial ovarian follicles (PFs) remain dormant, or begin to grow, are all but unknown. One of our groups has recently shown that activation of the Integrated Stress Response (ISR) pathway can slow follicular granulosa cell proliferation by activating cell cycle checkpoints. Those data suggest that the ISR is active and fluctuates according to local conditions in dormant PFs.

View Article and Find Full Text PDF

Missed doses, late doses, and other dosing irregularities are major barriers to effective pharmacotherapy, especially for the treatment of chronic conditions. What should a patient do if they did not take their last dose at the prescribed time? Should they take it late or skip it? In this paper, we investigate the pharmacokinetic effects of taking a late dose. We consider a single compartment model with linear absorption and elimination for a patient instructed to take doses at regular time intervals.

View Article and Find Full Text PDF

In insect respiration, oxygen from the air diffuses through a branching system of air-filled tubes to the cells of the body and carbon dioxide produced in cellular respiration diffuses out. The tracheal system has a very large surface area, so water loss is a potential threat and the question of how insects regulate oxygen uptake and water loss has been an important issue in insect physiology for the past century. The tracheal system starts at spiracles on the surface of the body that insects can open and close, and three phases are observed experimentally, open or closed for relatively long periods of time and opening and closing rapidly, which is called fluttering.

View Article and Find Full Text PDF

Nonadherence to medication is a major public health problem. To combat nonadherence, some clinicians have suggested using "forgiving" drugs, which maintain efficacy in spite of delayed or missed doses. What pharmacokinetic (PK) and pharmacodynamic (PD) factors make a drug forgiving? In this paper, we address this question by analyzing a linear PK/PD model for a patient with imperfect adherence.

View Article and Find Full Text PDF

Medication adherence is a well-known problem for pharmaceutical treatment of chronic diseases. Understanding how nonadherence affects treatment efficacy is made difficult by the ethics of clinical trials that force patients to skip doses of the medication being tested, the unpredictable timing of missed doses by actual patients, and the many competing variables that can either mitigate or magnify the deleterious effects of nonadherence, such as pharmacokinetic absorption and elimination rates, dosing intervals, dose sizes, and adherence rates. In this paper, we formulate and analyze a mathematical model of the drug concentration in an imperfectly adherent patient.

View Article and Find Full Text PDF

Medication adherence is a major problem for patients with chronic diseases that require long term pharmacotherapy. Many unanswered questions surround adherence, including how adherence rates translate into treatment efficacy and how missed doses of medication should be handled. To address these questions, we formulate and analyze a mathematical model of the drug concentration in a patient with imperfect adherence.

View Article and Find Full Text PDF

From nutrient uptake to chemoreception to synaptic transmission, many systems in cell biology depend on molecules diffusing and binding to membrane receptors. Mathematical analysis of such systems often neglects the fact that receptors process molecules at finite kinetic rates. A key example is the celebrated formula of Berg and Purcell for the rate that cell surface receptors capture extracellular molecules.

View Article and Find Full Text PDF

Many biological, social, and communication systems can be modeled by "searchers" moving through a complex network. For example, intracellular cargo is transported on tubular networks, news and rumors spread through online social networks, and the rapid global spread of infectious diseases occurs through passengers traveling on the airport network. To understand the timescale of search (or "transport" or "spread"), one commonly studies the first-passage time (FPT) of a single searcher (or "transporter" or "spreader") to a target.

View Article and Find Full Text PDF

In contrast to normal diffusion, there is no canonical model for reactions between chemical species which move by anomalous subdiffusion. Indeed, the type of mesoscopic equation describing reaction-subdiffusion systems depends on subtle assumptions about the microscopic behavior of individual molecules. Furthermore, the correspondence between mesoscopic and microscopic models is not well understood.

View Article and Find Full Text PDF

Deriving evolution equations accounting for both anomalous diffusion and reactions is notoriously difficult, even in the simplest cases. In contrast to normal diffusion, reaction kinetics cannot be incorporated into evolution equations modeling subdiffusion by merely adding reaction terms to the equations describing spatial movement. A series of previous works derived fractional reaction-diffusion equations for the spatiotemporal evolution of particles undergoing subdiffusion in one space dimension with linear reactions between a finite number of discrete states.

View Article and Find Full Text PDF

Many types of cells require the ability to pinpoint the location of an external stimulus from the arrival of diffusing signaling molecules at cell-surface receptors. How does the organization (number and spatial configuration) of these receptors shape the limit of a cell's ability to infer the source location? In the idealized scenario of a spherical cell, we apply asymptotic analysis to compute splitting probabilities between individual receptors and formulate an information-theoretic framework to quantify the role of receptor organization. Clustered configurations of receptors provide an advantage in detecting sources aligned with the clusters, suggesting a possible multiscale mechanism for single-cell source inference.

View Article and Find Full Text PDF