Seed germination is critical to agricultural productivity because low germination rates and/or asynchronous germination negatively affect stand establishment and subsequent yields. Exposure to high temperatures during seed imbibition can decrease both germination synchrony and rates through an ABA-mediated process called thermoinhibition. Methods to reduce thermoinhibition would be agriculturally valuable, particularly with increasing global mean temperatures.
View Article and Find Full Text PDFCRISPR-based high-throughput genome-wide loss-of-function screens are a valuable approach to functional genetics and strain engineering. The yeast Komagataella phaffii is a host of particular interest in the biopharmaceutical industry and as a metabolic engineering host for proteins and metabolites. Here, we design and validate a highly active 6-fold coverage genome-wide sgRNA library for this biotechnologically important yeast containing 30,848 active sgRNAs targeting over 99% of its coding sequences.
View Article and Find Full Text PDFThe engineering of novel protein-ligand binding interactions, particularly for complex drug-like molecules, is an unsolved problem, which could enable many practical applications of protein biosensors. In this work, we analyzed two engineered biosensors, derived from the plant hormone sensor PYR1, to recognize either the agrochemical mandipropamid or the synthetic cannabinoid WIN55,212-2. Using a combination of quantitative deep mutational scanning experiments and molecular dynamics simulations, we demonstrated that mutations at common positions can promote protein-ligand shape complementarity and revealed prominent differences in the electrostatic networks needed to complement diverse ligands.
View Article and Find Full Text PDFStabilizing proteins without otherwise hampering their function is a central task in protein engineering and design. PYR1 is a plant hormone receptor that has been engineered to bind diverse small molecule ligands. We sought a set of generalized mutations that would provide stability without affecting functionality for PYR1 variants with diverse ligand-binding capabilities.
View Article and Find Full Text PDFPrecise control of gene expression is critical for optimizing cellular metabolism and improving the production of valuable biochemicals. However, hard-wired approaches to pathway engineering, such as optimizing promoters, can take time and effort. Moreover, limited tools exist for controlling gene regulation in non-conventional hosts.
View Article and Find Full Text PDFPlants sense abscisic acid (ABA) using chemical-induced dimerization (CID) modules, including the receptor PYR1 and HAB1, a phosphatase inhibited by ligand-activated PYR1. This system is unique because of the relative ease with which ligand recognition can be reprogrammed. To expand the PYR1 system, we designed an orthogonal '*' module, which harbors a dimer interface salt bridge; X-ray crystallographic, biochemical and in vivo analyses confirm its orthogonality.
View Article and Find Full Text PDFThe misuse of cannabinoids and their synthetic variants poses significant threats to public health, necessitating the development of advanced techniques for detection of these compounds in biological or environmental samples. Existing methods face challenges like lengthy sample pretreatment and laborious antifouling steps. Herein, we present a novel sensing platform using magnetic nanorods coated with zwitterionic polymers for the simple, rapid, and sensitive detection of cannabinoids in biofluids.
View Article and Find Full Text PDFThe plant hormone abscisic acid (ABA) accumulates under abiotic stress to recast water relations and development. To overcome a lack of high-resolution sensitive reporters, we developed ABACUS2s-next-generation Förster resonance energy transfer (FRET) biosensors for ABA with high affinity, signal-to-noise ratio and orthogonality-that reveal endogenous ABA patterns in Arabidopsis thaliana. We mapped stress-induced ABA dynamics in high resolution to reveal the cellular basis for local and systemic ABA functions.
View Article and Find Full Text PDFParasitic nematodes are a major threat to global food security, particularly as the world amasses 10 billion people amid limited arable land. Most traditional nematicides have been banned owing to poor nematode selectivity, leaving farmers with inadequate means of pest control. Here we use the model nematode Caenorhabditis elegans to identify a family of selective imidazothiazole nematicides, called selectivins, that undergo cytochrome-p450-mediated bioactivation in nematodes.
View Article and Find Full Text PDFNematode parasites of humans, livestock and crops dramatically impact human health and welfare. Alarmingly, parasitic nematodes of animals have rapidly evolved resistance to anthelmintic drugs, and traditional nematicides that protect crops are facing increasing restrictions because of poor phylogenetic selectivity. Here, we exploit multiple motor outputs of the model nematode C.
View Article and Find Full Text PDFThe apocarotenoid phytohormone abscisic acid (ABA) regulates several aspects of plant development and stress responses. ABA is synthesized in response to multiple stressors and indirectly activates subfamily 2 Snf1-related kinases (SnRK2s) by receptor-mediated inhibition of clade A type IIC protein phosphatases (PP2Cs), which normally repress SnRK2 activity. The binding of ABA to its receptors triggers a change in receptor conformation that directs the formation of a receptor-ligand-PP2C complex that inhibits the activity of PP2C; this core mechanism can be harnessed for phosphatase activity-based measurements of receptor activation.
View Article and Find Full Text PDFA general method to generate biosensors for user-defined molecules could provide detection tools for a wide range of biological applications. Here, we describe an approach for the rapid engineering of biosensors using PYR1 (Pyrabactin Resistance 1), a plant abscisic acid (ABA) receptor with a malleable ligand-binding pocket and a requirement for ligand-induced heterodimerization, which facilitates the construction of sense-response functions. We applied this platform to evolve 21 sensors with nanomolar to micromolar sensitivities for a range of small molecules, including structurally diverse natural and synthetic cannabinoids and several organophosphates.
View Article and Find Full Text PDFChemical-induced dimerization (CID) modules enable users to implement ligand-controlled cellular and biochemical functions for a number of problems in basic and applied biology. A special class of CID modules occur naturally in plants and involve a hormone receptor that binds a hormone, triggering a conformational change in the receptor that enables recognition by a second binding protein. Two recent reports show that such hormone receptors can be engineered to sense dozens of structurally diverse compounds.
View Article and Find Full Text PDFMost genes in photosynthetic organisms remain functionally uncharacterized. Here, using a barcoded mutant library of the model eukaryotic alga Chlamydomonas reinhardtii, we determined the phenotypes of more than 58,000 mutants under more than 121 different environmental growth conditions and chemical treatments. A total of 59% of genes are represented by at least one mutant that showed a phenotype, providing clues to the functions of thousands of genes.
View Article and Find Full Text PDFAgricultural productivity in rain-fed crops has been threatened in recent decades due to increased instances of drought and diminishing freshwater resources. This has led to the development of novel chemical and genetic approaches for improving plant water use efficiency. Agrochemical water-banking with the aid of synthetic mimics of phytohormone abscisic acid (ABA) is one such approach, whereby plant transpiration can be chemically tuned to ensure water availability during critical stages of growth.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2021
Abscisic acid (ABA) is a key plant hormone that mediates both plant biotic and abiotic stress responses and many other developmental processes. ABA receptor antagonists are useful for dissecting and manipulating ABA's physiological roles in vivo. We set out to design antagonists that block receptor-PP2C interactions by modifying the agonist opabactin (OP), a synthetically accessible, high-affinity scaffold.
View Article and Find Full Text PDFSeveral small-molecule perturbagens of the plant endomembrane system are known, but few selectively disrupt endoplasmic reticulum (ER) structure and function. We conducted a microscopy-based screen for small-molecule disruptors of ER structure and discovered eroonazole, a 1,2-4-triazole that induces extensive ER vesiculation in seedlings. To identify eroonazole targets, we synthesized a clickable photoaffinity derivative and used it for whole-seedling labeling experiments.
View Article and Find Full Text PDFImportance: Evidence regarding corticosteroid use for severe coronavirus disease 2019 (COVID-19) is limited.
Objective: To determine whether hydrocortisone improves outcome for patients with severe COVID-19.
Design, Setting, And Participants: An ongoing adaptive platform trial testing multiple interventions within multiple therapeutic domains, for example, antiviral agents, corticosteroids, or immunoglobulin.
Background: In acute respiratory distress syndrome (ARDS) unrelated to COVID-19, two phenotypes, based on the severity of systemic inflammation (hyperinflammatory and hypoinflammatory), have been described. The hyperinflammatory phenotype is known to be associated with increased multiorgan failure and mortality. In this study, we aimed to identify these phenotypes in COVID-19-related ARDS.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDF