Publications by authors named "Sean Colloms"

Background: Large serine integrases (LSIs, derived from temperate phages) have been adapted for use in a multipart DNA assembly process in vitro, called serine integrase recombinational assembly (SIRA). The versatility, efficiency, and fidelity of SIRA is limited by lack of a sufficient number of LSIs whose activities have been characterized in vitro.

Methods And Major Results: In this report, we compared the activities in vitro of 10 orthogonal LSIs to explore their suitability for multiplex SIRA reactions.

View Article and Find Full Text PDF

The structure and diversity of all open microbial communities are shaped by individual births, deaths, speciation and immigration events; the precise timings of these events are unknowable and unpredictable. This randomness is manifest as ecological drift in the population dynamics, the importance of which has been a source of debate for decades. There are theoretical reasons to suppose that drift would be imperceptible in large microbial communities, but this is at odds with circumstantial evidence that effects can be seen even in huge, complex communities.

View Article and Find Full Text PDF

Decatenation is a crucial reaction of DNA topoisomerases in DNA replication and is frequently used in drug screening. Usually this reaction is monitored using kinetoplast DNA as a substrate, although this assay has several limitations. Here we have engineered a substrate for Tn resolvase that generates a singly-linked catenane that can readily be purified from the DNA substrate after restriction enzyme digestion and centrifugation.

View Article and Find Full Text PDF

A device that counts and records the number of events experienced by an individual cell could have many uses in experimental biology and biotechnology. Here, we report a DNA-based 'latch' that switches between two states upon each exposure to a repeated stimulus. The key component of the latch is a DNA segment whose orientation is inverted by the actions of ϕC31 integrase and its recombination directionality factor (RDF).

View Article and Find Full Text PDF

Transposons are invaluable biological tools for the genetic manipulation of microorganisms. ISY100 from sp. PCC6803 is a member of the Tc1//IS superfamily, and is characterized by high transposition efficiency and a strong preference for TA target sequences.

View Article and Find Full Text PDF

Dual-state genetic switches that can change their state in response to input signals can be used in synthetic biology to encode memory and control gene expression. A transcriptional toggle switch (TTS), with two mutually repressing transcription regulators, was previously used for switching between two expression states. In other studies, serine integrases have been used to control DNA inversion switches that can alternate between two different states.

View Article and Find Full Text PDF

Assembling multiple DNA fragments into functional plasmids is an important and often rate-limiting step in engineering new functions in living systems. Bacteriophage integrases are enzymes that carry out efficient recombination reactions between short, defined DNA sequences known as att sites. These DNA splicing reactions can be used to assemble large numbers of DNA fragments into a functional circular plasmid in a method termed serine integrase recombinational assembly (SIRA).

View Article and Find Full Text PDF

Bacteriophage serine integrases are extensively used in biotechnology and synthetic biology for assembly and rearrangement of DNA sequences. Serine integrases promote recombination between two different DNA sites, attP and attB, to form recombinant attL and attR sites. The 'reverse' reaction requires another phage-encoded protein called the recombination directionality factor (RDF) in addition to integrase; RDF activates attL × attR recombination and inhibits attP × attB recombination.

View Article and Find Full Text PDF

Serine integrases catalyse site-specific recombination to integrate and excise bacteriophage genomes into and out of their host's genome. These enzymes exhibit remarkable directionality; in the presence of the integrase alone, recombination between attP and attB DNA sites is efficient and irreversible, giving attL and attR products which do not recombine further. However, in the presence of the bacteriophage-encoded recombination directionality factor (RDF), integrase efficiently promotes recombination between attL and attR to re-form attP and attB The DNA substrates and products of both reactions are approximately isoenergetic, and no cofactors (such as adenosine triphosphate) are required for recombination.

View Article and Find Full Text PDF

Serine integrases, DNA site-specific recombinases used by bacteriophages for integration and excision of their DNA to and from their host genomes, are increasingly being used as tools for programmed rearrangements of DNA molecules for biotechnology and synthetic biology. A useful feature of serine integrases is the simple regulation and unidirectionality of their reactions. Recombination between the phage attP and host attB sites is promoted by the serine integrase alone, giving recombinant attL and attR sites, whereas the 'reverse' reaction (between attL and attR) requires an additional protein, the recombination directionality factor (RDF).

View Article and Find Full Text PDF

Engineering cellular memory is a key area of research in which Synthetic Biology has already begun to make significant impacts. Recent work elucidating transcriptional memory devices has paved the way for the creation of bistable genetic switches based on DNA recombination. Attempts to experimentally design and build synthetic systems using recombinases have thus far been hindered by a lack of validated computational models that capture the mechanistic basis of DNA recombination.

View Article and Find Full Text PDF

Within the last 25 years, bacteriophage integrases have rapidly risen to prominence as genetic tools for a wide range of applications from basic cloning to genome engineering. Serine integrases such as that from ϕC31 and its relatives have found an especially wide range of applications within diverse micro-organisms right through to multi-cellular eukaryotes. Here, we review the mechanisms of the two major families of integrases, the tyrosine and serine integrases, and the advantages and disadvantages of each type as they are applied in genome engineering and synthetic biology.

View Article and Find Full Text PDF

Synthetic biology requires effective methods to assemble DNA parts into devices and to modify these devices once made. Here we demonstrate a convenient rapid procedure for DNA fragment assembly using site-specific recombination by C31 integrase. Using six orthogonal attP/attB recombination site pairs with different overlap sequences, we can assemble up to five DNA fragments in a defined order and insert them into a plasmid vector in a single recombination reaction.

View Article and Find Full Text PDF

Xer site-specific recombination at cer and psi converts bacterial plasmid multimers into monomers so that they can be efficiently segregated to both daughter cells at cell division. Recombination is catalysed by the XerC and XerD recombinases acting at ~30 bp core sites, and is regulated by the action of accessory proteins bound to accessory DNA sequences adjacent to the core sites. Recombination normally occurs only between sites in direct repeat in a negatively supercoiled circular DNA molecule, and yields two circular products linked together in a right-handed four-node catenane with antiparallel sites.

View Article and Find Full Text PDF

Integrases, such as that of the Streptomyces temperate bacteriophage ϕC31, promote site-specific recombination between DNA sequences in the bacteriophage and bacterial genomes to integrate or excise the phage DNA. ϕC31 integrase belongs to the serine recombinase family, a large group of structurally related enzymes with diverse biological functions. It has been proposed that serine integrases use a "subunit rotation" mechanism to exchange DNA strands after double-strand DNA cleavage at the two recombining att sites, and that many rounds of subunit rotation can occur before the strands are religated.

View Article and Find Full Text PDF

Transposons of the Tc1/mariner family have been used to integrate foreign DNA stably into the genome of a large variety of different cell types and organisms. Integration is at TA dinucleotides located essentially at random throughout the genome, potentially leading to insertional mutagenesis, inappropriate activation of nearby genes, or poor expression of the transgene. Here, we show that fusion of the zinc-finger DNA-binding domain of Zif268 to the C-terminus of ISY100 transposase leads to highly specific integration into TA dinucleotides positioned 6-17 bp to one side of a Zif268 binding site.

View Article and Find Full Text PDF

A key step in cut-and-paste DNA transposition is the pairing of transposon ends before the element is excised and inserted at a new site in its host genome. Crystallographic analyses of the paired-end complex (PEC) formed from precleaved transposon ends and the transposase of the eukaryotic element Mos1 reveals two parallel ends bound to a dimeric enzyme. The complex has a trans arrangement, with each transposon end recognized by the DNA binding region of one transposase monomer and by the active site of the other monomer.

View Article and Find Full Text PDF

The multiresistance plasmid pJHCMW1, first identified in a Klebsiella pneumoniae strain isolated from a neonate with meningitis, includes a Xer recombination site, mwr, with unique characteristics. Efficiency of resolution of mwr-containing plasmid dimers is strongly dependent on the osmotic pressure of the growth medium. An increase in supercoiling density of plasmid DNA was observed as the osmotic pressure of the growth culture decreased.

View Article and Find Full Text PDF

In the lysogenic state, bacteriophage P1 is maintained as a low copy-number circular plasmid. Site-specific recombination at loxP by the phage-encoded Cre protein keeps P1 monomeric, thus helping to ensure stable plasmid inheritance. Two Escherichia coli DNA-binding proteins, PepA and ArgR, were recently reported to be necessary for maintenance or establishment of P1 lysogeny.

View Article and Find Full Text PDF

The Synechocystis sp. PCC6803 insertion sequence ISY100 (ISTcSa) belongs to the Tc1/mariner/IS630 family of transposable elements. ISY100 transposase was purified and shown to promote transposition in vitro.

View Article and Find Full Text PDF

By placing loxP adjacent to the accessory sequences from the Xer/psi multimer resolution system, we have imposed topological selectivity and specificity on Cre/loxP recombination. In this hybrid recombination system, the Xer accessory protein PepA binds to psi accessory sequences, interwraps them, and brings the loxP sites together such that the product of recombination is a four-node catenane. Here, we investigate communication between PepA and Cre by varying the distance between loxP and the accessory sequences, and by altering the orientation of loxP.

View Article and Find Full Text PDF

PepA is an aminopeptidase and also functions as a DNA-binding protein in two unrelated systems in Escherichia coli: Xer site-specific recombination and transcriptional regulation of carAB. In these systems, PepA binds to and brings together distant segments of DNA to form interwrapped, nucleosome-like structures. Here we report the selection of PepA mutants that were unable to support efficient Xer recombination.

View Article and Find Full Text PDF

The product of Xer recombination at directly repeated psi sites on a circular unknotted DNA molecule is a right-hand four-noded catenane. Here, we use tangle equations to analyze the topological changes associated with Xer recombination at psi. This mathematical method allows computation of all possible topological pathways consistent with the experimental data.

View Article and Find Full Text PDF

Site-specific recombination by the Cre recombinase takes place at a simple DNA site (loxP), requires no additional proteins and gives topologically simple recombination products. In contrast, cer and psi sites for Xer recombination contain approximately 150 bp of accessory sequences, require accessory proteins PepA, ArgR and ArcA, and the products are specifically linked to form a four-noded catenane. Here, we use hybrid sites consisting of accessory sequences of cer or psi fused to loxP to probe the function of accessory proteins in site-specific recombination.

View Article and Find Full Text PDF

Xer site-specific recombination in Escherichia coli converts plasmid multimers to monomers, thereby ensuring their correct segregation at cell division. Xer recombination at the psi site of plasmid pSC101 is preferentially intramolecular, giving products of a single topology. This intramolecular selectivity is imposed by accessory proteins, which bind at psi accessory sequences and activate Xer recombination at the psi core.

View Article and Find Full Text PDF