Publications by authors named "Sean C Patro"

Effective strategies to eliminate human immunodeficiency virus type 1 (HIV-1) reservoirs are likely to require more thorough characterizations of proviruses that persist on antiretroviral therapy (ART). The rarity of infected CD4 T-cells and related technical challenges have limited the characterization of integrated proviruses. Current approaches using next-generation sequencing can be inefficient and limited sequencing depth can make it difficult to link proviral sequences to their respective integration sites.

View Article and Find Full Text PDF

Development of potential HIV-1 curative interventions requires accurate characterization of the proviral reservoir, defined as host-integrated viral DNA genomes that drive rebound of viremia upon halting ART (antiretroviral therapy). Evaluation of such interventions necessitates methods capable of pinpointing the rare, genetically intact, replication-competent proviruses within a background of defective proviruses. This evaluation can be achieved by identifying the distinct integration sites of intact proviruses within host genomes and monitoring the dynamics of these proviruses and host cell lineages over longitudinal sampling.

View Article and Find Full Text PDF

Understanding HIV-1 persistence despite antiretroviral therapy (ART) is of paramount importance. Both single-genome sequencing (SGS) and integration site analysis (ISA) provide useful information regarding the structure of persistent HIV DNA populations; however, until recently, there was no way to link integration sites to their cognate proviral sequences. Here, we used multiple-displacement amplification (MDA) of cellular DNA diluted to a proviral endpoint to obtain full-length proviral sequences and their corresponding sites of integration.

View Article and Find Full Text PDF

Background: HIV-1 proviruses can persist during ART in clonally-expanded populations of CD4+ T cells. To date, few examples of an expanded clones containing replication-competent proviruses exist, although it is suspected to be common. One such clone, denoted AMBI-1 (Maldarelli et al.

View Article and Find Full Text PDF

To investigate the possibility that HIV-1 replication in lymph nodes sustains the reservoir during ART, we looked for evidence of viral replication in 5 donors after up to 13 years of viral suppression. We characterized proviral populations in lymph nodes and peripheral blood before and during ART, evaluated the levels of viral RNA expression in single lymph node and blood cells, and characterized the proviral integration sites in paired lymph node and blood samples. Proviruses with identical sequences, identical integration sites, and similar levels of RNA expression were found in lymph nodes and blood samples collected during ART, and no single sequence with significant divergence from the pretherapy population was present in either blood or lymph nodes.

View Article and Find Full Text PDF

Reversal of monocyte and macrophage activation and the relationship to viral suppression and T cell activation are unknown in patients with advanced HIV-1 infection, initiating antiretroviral therapy. This study aimed to determine whether reduction in biomarkers of monocyte and macrophage activation would be reduced in conjunction with viral suppression and resolution of T cell activation. Furthermore, we hypothesized that the addition of CCR5 antagonism (by maraviroc) would mediate greater reduction of monocyte/macrophage activation markers than suppressive antiretroviral therapy alone.

View Article and Find Full Text PDF

Unlabelled: Although monocytes and macrophages are targets of HIV-1-mediated immunopathology, the impact of high viremia on activation-induced monocyte apoptosis relative to monocyte and macrophage activation changes remains undetermined. In this study, we determined constitutive and oxidative stress-induced monocyte apoptosis in uninfected and HIV(+) individuals across a spectrum of viral loads (n = 35; range, 2,243 to 1,355,998 HIV-1 RNA copies/ml) and CD4 counts (range, 26 to 801 cells/mm(3)). Both constitutive apoptosis and oxidative stress-induced apoptosis were positively associated with viral load and negatively associated with CD4, with an elevation in apoptosis occurring in patients with more than 40,000 (4.

View Article and Find Full Text PDF

HIV-1 entry requires the cell surface expression of CD4 and either the CCR5 or CXCR4 coreceptors on host cells. Individuals homozygous for the ccr5Δ32 polymorphism do not express CCR5 and are protected from infection by CCR5-tropic (R5) virus strains. As an approach to inactivating CCR5, we introduced CCR5-specific zinc-finger nucleases into human CD4+ T cells prior to adoptive transfer, but the need to protect cells from virus strains that use CXCR4 (X4) in place of or in addition to CCR5 (R5X4) remains.

View Article and Find Full Text PDF