Publications by authors named "Sean C Coburn"

Laser absorption Doppler velocimeters use a crossed-beam configuration to cancel errors due to laser frequency drift and absorption model uncertainty. This configuration complicates the spatial interpretation of the measurement since the two beams sample different volumes of gas. Here, we achieve single-beam velocimetry with a portable dual comb spectrometer (DCS) with high frequency accuracy and stability enabled by GPS-referencing, and a new high-temperature water vapor absorption database.

View Article and Find Full Text PDF

Developing accurate computational models of wildfire dynamics is increasingly important due to the substantial and expanding negative impacts of wildfire events on human health, infrastructure, and the environment. Wildfire spread and emissions depend on a number of factors, including fuel type, environmental conditions (moisture, wind speed, etc.), and terrain/location.

View Article and Find Full Text PDF

Dual comb spectroscopy (DCS) of near-infrared HO absorption has been demonstrated in the past for low-uncertainty flow measurements in ground test ramjets. However, HO is scarce at actual ramjet flight altitudes, so oxygen is a preferable absorption target. Here, we demonstrate DCS of the O A-band (13000-13200 cm) and fit temperature and velocity across different flow conditions in a ground-test ramjet, demonstrating precisions of 3-5% and 7-11% respectively in five minutes and total uncertainty estimates of 7-9% and 8-12% respectively.

View Article and Find Full Text PDF

We present a dual-comb interferometer capable of measuring both the range to a target as well as the target's transverse rotation rate. Measurement of the transverse rotation of the target is achieved by preparing the probe comb with orbital angular momentum and measuring the resultant phase shift between interferograms, which arises from the rotational Doppler shift. The distance to the target is measured simultaneously by measuring the time-of-flight delay between the target and reference interferogram centerbursts.

View Article and Find Full Text PDF

Temporal variability contributes to uncertainty in inventories of methane emissions from the natural gas supply chain. Extrapolation of instantaneous, "snapshot-in-time" measurements, for example, can miss temporal intermittency and confound bottom-up/top-down comparisons. Importantly, no continuous long-term datasets record emission variability from underground natural gas storage facilities despite substantial contributions to sector-wide emissions.

View Article and Find Full Text PDF

A new method is tested in a single-blind study for detection, attribution, and quantification of methane emissions from the natural gas supply chain, which contribute substantially to annual U.S. emissions.

View Article and Find Full Text PDF

The trace gas glyoxal (CHOCHO) forms from the atmospheric oxidation of hydrocarbons and is a precursor to secondary organic aerosol. We have measured the absorption cross section of disubstituted (13)CHO(13)CHO ((13)C glyoxal) at moderately high (1 cm(-1)) optical resolution between 21 280 and 23 260 cm(-1) (430-470 nm). The isotopic shifts in the position of absorption features were found to be largest near 455 nm (Δν = 14 cm(-1); Δλ = 0.

View Article and Find Full Text PDF