One of the primary complications in generating physiologically representative skin tissue is the inability to integrate vasculature into the system, which has been shown to promote the proliferation of basal keratinocytes and consequent keratinocyte differentiation, and is necessary for mimicking representative barrier function in the skin and physiological transport properties. We created a 3D vascularized human skin equivalent (VHSE) with a dermal and epidermal layer, and compared keratinocyte differentiation (immunomarker staining), epidermal thickness (H&E staining), and barrier function (transepithelial electrical resistance (TEER) and dextran permeability) to a static, organotypic avascular HSE (AHSE). The VHSE had a significantly thicker epidermal layer and increased resistance, both an indication of increased barrier function, compared to the AHSE.
View Article and Find Full Text PDFThis study presents a multilayer in vitro human skin platform to quantitatively relate predicted spatial time-temperature history with measured tissue injury response. This information is needed to elucidate high-temperature, short-duration burn injury kinetics and enables determination of relevant input parameters for computational models to facilitate treatment planning. Multilayer in vitro skin platforms were constructed using human dermal keratinocytes and fibroblasts embedded in collagen I hydrogels.
View Article and Find Full Text PDF