Almost five decades ago Crick, Orgel, and others proposed the RNA world hypothesis. Subsequent studies have raised the possibility that RNA might be able to support both genotype and phenotype, and the function of RNA templates has been studied in terms of evolution, replication, and catalysis. Recently, we engineered strains of E.
View Article and Find Full Text PDFAll known living organisms use at least 20 amino acids as the basic building blocks of life. Efforts to reduce the number of building blocks in a replicating system to below the 20 canonical amino acids have not been successful to date. In this work, we use filamentous phage as a model system to investigate the feasibility of removing methionine (Met) from the proteome.
View Article and Find Full Text PDFTyrosine phosphorylation is a common protein post-translational modification that plays a critical role in signal transduction and the regulation of many cellular processes. Using a propeptide strategy to increase cellular uptake of O-phosphotyrosine (pTyr) and its nonhydrolyzable analog 4-phosphomethyl-L-phenylalanine (Pmp), we identified an orthogonal aminoacyl-tRNA synthetase-tRNA pair that allows site-specific incorporation of both pTyr and Pmp into recombinant proteins in response to the amber stop codon in Escherichia coli in good yields. The X-ray structure of the synthetase reveals a reconfigured substrate-binding site, formed by nonconservative mutations and substantial local structural perturbations.
View Article and Find Full Text PDFOver 2,000 human proteins are predicted to be secreted, but the biological function of the many of these proteins is still unknown. Moreover, a number of these proteins may act as new therapeutic agents or be targets for the development of therapeutic antibodies. To further explore the extracellular proteome, we have developed a secretome-enriched open reading frame (ORF) library that can be readily screened for autocrine activity in cell-based phenotypic or reporter assays.
View Article and Find Full Text PDFSeveral modified bases have been observed in the genomic DNA of bacteriophages, prokaryotes, and eukaryotes that play a role in restriction systems and/or epigenetic regulation. In our efforts to understand the consequences of replacing a large fraction of a canonical nucleoside with a modified nucleoside, we previously replaced around 75% of thymidine (T) with 5'-hydroxymethyl-2'-deoxyuridine (5hmU) in the Escherichia coli genome. In this study, we engineered the pyrimidine nucleotide biosynthetic pathway using T4 bacteriophage genes to achieve approximately 63% replacement of 2'-deoxycytidine (dC) with 5-hydroxymethyl-2'-deoxycytidine (5hmC) in the E.
View Article and Find Full Text PDFProkaryotic and eukaryotic genomic DNA is comprised of the four building blocks A, G, C, and T. We have begun to explore the consequences of replacing a large fraction or all of a nucleoside in genomic DNA with a modified nucleoside. As a first step we have investigated the possibility of replacement of T by 2'-deoxy-5-(hydroxymethyl)uridine (5hmU) in the genomic DNA of Escherichia coli.
View Article and Find Full Text PDFDisulfide bonds play an important role in protein folding and stability. However, the cross-linking of sites within proteins by cysteine disulfides has significant distance and dihedral angle constraints. Here we report the genetic encoding of noncanonical amino acids containing long side-chain thiols that are readily incorporated into both bacterial and mammalian proteins in good yields and with excellent fidelity.
View Article and Find Full Text PDFThiopeptides are a subclass of ribosomally synthesized and posttranslationally modified peptides (RiPPs) with complex molecular architectures and an array of biological activities, including potent antimicrobial activity. Here we report the generation of thiopeptides containing noncanonical amino acids (ncAAs) by introducing orthogonal amber suppressor aminoacyl-tRNA synthetase/tRNA pairs into a thiocillin producer strain of Bacillus cereus .We demonstrate that thiopeptide variants containing ncAAs with bioorthogonal chemical reactivity can be further postbiosynthetically modified with biophysical probes, including fluorophores and photo-cross-linkers.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2015
With few exceptions, all living organisms encode the same 20 canonical amino acids; however, it remains an open question whether organisms with additional amino acids beyond the common 20 might have an evolutionary advantage. Here, we begin to test that notion by making a large library of mutant enzymes in which 10 structurally distinct noncanonical amino acids were substituted at single sites randomly throughout TEM-1 β-lactamase. A screen for growth on the β-lactam antibiotic cephalexin afforded a unique p-acrylamido-phenylalanine (AcrF) mutation at Val-216 that leads to an increase in catalytic efficiency by increasing kcat, but not significantly affecting KM.
View Article and Find Full Text PDFThe first general strategy for a directing effect on metal (oxo)-promoted C-H hydroxylations is described. Carboxylic acid moieties on the substrate overcome unfavorable electronic, steric, and stereoelectronic biases in C-H hydroxylations catalyzed by the non-heme iron complex Fe(PDP). In a demonstration of the power of this directing effect, C-H oxidation is diverted away from an electronically favored C-1 H abstraction/rearrangement pathway in the paclitaxel framework to enable installation of C-2 oxidation in the naturally occurring oxidation state and stereoconfiguration.
View Article and Find Full Text PDFCarboxylate-ligated, non-haem iron enzymes demonstrate the capacity for catalysing such remarkable processes as hydroxylations, chlorinations and desaturations of inert, aliphatic C-H bonds. A key to functional diversity is the enzymes' ability to divert fleeting radicals towards different types of functionalization using active site and/or substrate modifications. We report that a non-haem iron hydroxylase catalyst [Fe(PDP)] can also be diverted to catalytic, mixed hydroxylase/desaturase activity with aliphatic C-H bonds.
View Article and Find Full Text PDFA Brønsted base activation mode for oxidative, Pd(II)/sulfoxide-catalyzed, intermolecular C-H allylic amination is reported. N,N-diisopropylethylamine was found to promote amination of unactivated terminal olefins, forming the corresponding linear allylic amine products with high levels of stereo-, regio-, and chemoselectivity. The predictable and high selectivity of this C-H oxidation method enables late-stage incorporation of nitrogen into advanced synthetic intermediates and natural products.
View Article and Find Full Text PDF