Biliverdin reductase IXβ (BLVRB) is a crucial enzyme in heme metabolism. Recent studies in humans have identified a loss-of-function mutation (Ser111Leu) that unmasks a fundamentally important role in hematopoiesis. We have undertaken experimental and thermodynamic modeling studies to provide further insight into the role of the cofactor in substrate accessibility and protein folding properties regulating BLVRB catalytic mechanisms.
View Article and Find Full Text PDFMany vertebrate species express two enzymes that are capable of catalysing the reduction of various isomers of biliverdin. Biliverdin-IXalpha reductase (BVR-A) is most active with its physiological substrate biliverdin-IXalpha, but can also reduce the three other biliverdin isomers IXbeta, IXdelta and IXgamma. Biliverdin-IXbeta reductase (BVR-B) catalyses the reduction of only the IXbeta, IXdelta and IXgamma isomers of biliverdin.
View Article and Find Full Text PDFBVR-B (biliverdin-IXbeta reductase) also known as FR (flavin reductase) is a promiscuous enzyme catalysing the pyridine-nucleotide-dependent reduction of a variety of flavins, biliverdins, PQQ (pyrroloquinoline quinone) and ferric ion. Mechanistically it is a good model for BVR-A (biliverdin-IXalpha reductase), a potential pharmacological target for neonatal jaundice and also a potential target for adjunct therapy to maintain protective levels of biliverdin-IXalpha during organ transplantation. In a commentary on the structure of BVR-B it was noted that one outstanding issue remained: whether the mechanism was a concerted hydride transfer followed by protonation of a pyrrolic anion or protonation of the pyrrole followed by hydride transfer.
View Article and Find Full Text PDFThe effect of pH on the initial-rate kinetic behaviour of BVR-A (biliverdin-IXalpha reductase) exhibits an alkaline optimum with NADPH as cofactor, but a neutral optimum with NADH as cofactor. This has been described as dual cofactor and dual pH dependent behaviour; however, no mechanism has been described to explain this phenomenon. We present evidence that the apparent peak of activity observed at neutral pH with phosphate buffer and NADH as cofactor is an anion-dependent activation, where inorganic phosphate apparently mimics the role played by the 2'-phosphate of NADPH in stabilizing the interaction between NADH and the enzyme.
View Article and Find Full Text PDF