Human arginase I (HARGI) is a metalloprotein highly expressed in the liver cytosol and catalyzes the hydrolysis of l-arginine to form l-ornithine and urea. Understanding the reaction mechanism would be highly helpful to design new inhibitor molecules for HARGI as it is a target for heart- and blood-related diseases. In this study, we explored the hydrolysis reaction mechanism of HARGI with antiferromagnetic and ferromagnetic coupling between two Mn(II) ions at the catalytic site by employing molecular dynamics simulations coupled with quantum mechanics and molecular mechanics (QM/MM).
View Article and Find Full Text PDFThis work proposes a soft-sensor design for real-time estimation of glucose concentration under mixotrophic conditions using Raman spectroscopy. The suggested approach applies a Rolling-Circle Filter (RCF), Partial Least Squares (PLS), and a successive Savitzky-Golay (SG) smoothing filter. RCF is used to remove the background effects of Raman spectrum in the pre-processing step.
View Article and Find Full Text PDF