CD46, a transmembrane protein known for protecting cells from complement‑mediated damage, is frequently dysregulated in various types of cancer. Its overexpression in bladder cancers safeguards the cancer cells against both complement and antibody‑mediated cytotoxicity. The present study explored a new role of CD46 in facilitating cancer cell invasion and metastasis, examining its regulatory effect on matrix metalloproteases (MMPs) and their effect on the metastatic capability of bladder cancer cells.
View Article and Find Full Text PDFPatient-friendly medical diagnostics and treatments have been receiving a great deal of interest due to their rapid and cost-effective health care applications with minimized risk of infection, which has the potential to replace conventional hospital-based medical procedures. In particular, the integration of recently developed materials into health care devices allows the rapid development of point-of-care (POC) sensing platforms and implantable devices with special functionalities. In this review, the recent advances in biosensors for patient-friendly diagnosis and implantable devices for patient-friendly treatment are discussed.
View Article and Find Full Text PDFInspired by the human somatosensory system, pressure applied to multiple pressure sensors is received in parallel and combined into a representative signal pattern, which is subsequently processed using machine learning. The pressure signals are combined using a wireless system, where each sensor is assigned a specific resonant frequency on the reflection coefficient (S ) spectrum, and the applied pressure changes the magnitude of the S pole with minimal frequency shift. This allows the differentiation and identification of the pressure applied to each sensor.
View Article and Find Full Text PDFRecent progress in electronic skin or e-skin research is broadly reviewed, focusing on technologies needed in three main applications: skin-attachable electronics, robotics, and prosthetics. First, since e-skin will be exposed to prolonged stresses of various kinds and needs to be conformally adhered to irregularly shaped surfaces, materials with intrinsic stretchability and self-healing properties are of great importance. Second, tactile sensing capability such as the detection of pressure, strain, slip, force vector, and temperature are important for health monitoring in skin attachable devices, and to enable object manipulation and detection of surrounding environment for robotics and prosthetics.
View Article and Find Full Text PDFAn ultrahigh sensitive capacitive pressure sensor based on a porous pyramid dielectric layer (PPDL) is reported. Compared to that of the conventional pyramid dielectric layer, the sensitivity was drastically increased to 44.5 kPa in the pressure range <100 Pa, an unprecedented sensitivity for capacitive pressure sensors.
View Article and Find Full Text PDFElectronic skin are devices that mimic the functionalities of human skin, which require high sensitivity, large dynamic range, high spatial uniformity, low-cost and large-area processability, and the capacity to differentiate various external inputs. We herein introduce a versatile droplet-based microfluidic-assisted emulsion self-assembly process to generate three-dimensional microstructure-based high-performance capacitive and piezoresistive pressure sensors for electronic skin applications. Our technique can generate uniformly sized micropores that are self-assembled in an orderly close-packed manner over a large area, which results in high spatial uniformity.
View Article and Find Full Text PDFThe prostate gland contains a high level of intracellular zinc, which is dramatically diminished during prostate cancer (PCa) development. Owing to the unclear role of zinc in this process, therapeutic applications using zinc are limited. This study aimed to clarify the role of zinc and its underlying mechanism in the growth of PCa.
View Article and Find Full Text PDFCD46 is generally overexpressed in many human cancers, representing a prime target for CD46-binding adenoviruses (Ads). This could help to overcome low anti-tumoral activity by coxsackie-adenoviral receptor (CAR)-targeting cancer gene therapy viruses. However, because of scarce side-by-side information about CAR and CD46 expression levels in cancer cells, mixed observations of cancer therapeutic efficacy have been observed.
View Article and Find Full Text PDFTactile sensors that can mechanically decouple, and therefore differentiate, various tactile inputs are highly important to properly mimic the sensing capabilities of human skin. Herein, we present an all-solution processable pressure insensitive strain sensor that utilizes the difference in structural change upon the application of pressure and tensile strain. Under the application of strain, microcracks occur within the multiwalled carbon nanotube (MWCNT) network, inducing a large change in resistance with gauge factor of ∼56 at 70% strain.
View Article and Find Full Text PDFCD46 is a complement inhibitor membrane cofactor which also acts as a receptor for various microbes, including species B adenoviruses (Ads). While most Ad gene therapy vectors are derived from species C and infect cells through coxsackie-adenovirus receptor (CAR), CAR expression is downregulated in many cancer cells, resulting inefficient Ad-based therapeutics. Despite a limited knowledge on the expression status of many cancer cells, an increasing number of cancer gene therapy studies include fiber-modified Ad vectors redirected to the more ubiquitously expressed CD46.
View Article and Find Full Text PDFThe entire nucleotide sequence of the xylose reductase (XR) gene in Candida milleri CBS8195 sourdough yeast was determined by degenerate polymerase chain reaction (PCR) and genome walking. The sequence analysis revealed an open-reading frame of 981 bp that encoded 326 amino acids with a predicted molecular mass of 36.7 kDa.
View Article and Find Full Text PDF