Publications by authors named "Se-Yeon Heo"

Severe stress endangers outdoor workers who are in an exceedingly hot workplace. Although recent studies quantify stress levels on the human skin, they still rely on rigid, bulky sensor modules, causing data loss from motion artifacts and limited field-deployability for continuous health monitoring. Moreover, no prior work shows a wearable device that can endure heat exposure while showing continuous monitoring of a subject's stress under realistic working environments.

View Article and Find Full Text PDF

Recent advances in passive radiative cooling systems describe a variety of strategies to enhance cooling efficiency, while the integration of such technology with a bioinspired design using biodegradable materials can offer a research opportunity to generate energy in a sustainable manner, favorable for the temperature/climate system of the planet. Here, we introduce stretchable and ecoresorbable radiative cooling/heating systems engineered with zebra stripe-like patterns that enable the generation of a large in-plane temperature gradient for thermoelectric generation. A comprehensive study of materials with theoretical evaluations validates the ability to accomplish the target performances even under external mechanical strains, while all systems eventually disappear under physiological conditions.

View Article and Find Full Text PDF

Optical losses in photovoltaic (PV) systems cause nonradiative recombination or incomplete absorption of incident light, hindering the attainment of high energy conversion efficiency. The surface of the PV cells is encapsulated to not only protect the cell but also control the transmission properties of the incident light to promote maximum conversion. Despite many advances in elaborately designed photonic structures for light harvesting, the complicated process and sophisticated patterning highly diminish the cost-effectiveness and further limit the mass production on a large scale.

View Article and Find Full Text PDF

Reconfigurability of a device that allows tuning of its shape and stiffness is utilized for personal electronics to provide an optimal mechanical interface for an intended purpose. Recent approaches in developing such transformative electronic systems (TES) involved the use of gallium liquid metal, which can change its liquid-solid phase by temperature to facilitate stiffness control of the device. However, the current design cannot withstand excessive heat during outdoor applications, leading to undesired softening of the device when the rigid mode of operation is favored.

View Article and Find Full Text PDF

For the efficient radiative cooling of objects, coolers should emit heat within atmospheric transparent window and block heat absorption from the surrounding environments. Thus, selective emitters enable highly efficient cooling via engineered photonic structures such as metamaterials and multi-stacking structures. However, these structures require sophisticated fabrication processes and large quantities of materials, which can restrict mass-production.

View Article and Find Full Text PDF

Optimized thermal emitters using optical resonances have been attracting increased attention for diverse applications, such as infrared (IR) sensing, thermal imaging, gas sensing, thermophotovoltaics, thermal camouflage, and radiative cooling. Depending on the applications, the recently developed IR devices have been tailored to achieve not only spectrally engineered emission but also spatially resolved emission using various nanometallic structures, metamaterials, and multistacking layers, which accompany high structural complexity and prohibitive production cost. Herein, this article presents a simple and affordable approach to obtain spatially and spectrally selective hybrid thermal emitters (HTEs) based on spoof surface plasmons of microscaled Ag grooves manifested in encapsulation polymer layers.

View Article and Find Full Text PDF

Passive radiative cooling functions by reflecting the solar spectrum and emitting infrared waves in broadband or selectively. However, cooling enclosed spaces that trap heat by greenhouse effect remains a challenge. We present a emitter (ET) consisting of an Ag-polydimethylsiloxane layer on micropatterned quartz substrate.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionu8hbkj45v5kma6adkcl99k411qskivpl): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once