J Biomed Mater Res B Appl Biomater
July 2014
Porous Ti has been widely investigated for orthopedic and dental applications on account of their ability to promote implant fixation via bone ingrowth into pores. In this study, highly aligned porous Ti scaffolds coated with a bone morphogenetic protein (BMP)-loaded silica/chitosan hybrid were produced, and their bone regeneration ability was evaluated by in vivo animal experiments. Reverse freeze casting allowed for the creation of highly aligned pores, resulting in a high compressive strength of 254 ± 21 MPa of the scaffolds at a porosity level of ∼51 vol %.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
January 2013
This paper proposes dynamic freeze casting as a new manufacturing technique for producing porous Ti scaffolds with a uniform porous structure and good ductility. In this method, Ti/camphene slurries with various initial Ti contents (15, 20, and 25 vol.%) were frozen at 44 °C for 12 h in rotation, which allowed for the extensive growth of camphene crystals and the uniform construction of walls made of Ti particles.
View Article and Find Full Text PDFHighly porous titanium with aligned large pores up to 500 μm in size, which is suitable for scaffold applications, was successfully fabricated using the reverse freeze casting method. In this process we have newly developed, the Ti powders migrated spontaneously along the pre-aligned camphene boundaries at a temperature of 45.5°C and formed a titanium-camphene mixture with an aligned structure; this was followed by freeze drying and sintering.
View Article and Find Full Text PDFThis study reports the deposition of TiN films on Co-Cr substrates to improve the substrates' mechanical properties and biological properties. In particular, the argon to nitrogen (Ar:N(2)) gas flow ratio was adjusted to control the microstructure of the TiN films. A Ti interlayer was also used to enhance the adhesion strength between the Co-Cr substrate and TiN films.
View Article and Find Full Text PDFA novel fibrous membrane was developed for guided bone regeneration (GBR) through electrospinning a uniform poly(epsilon-caprolactone) (PCL)-silica hybrid sol. The membrane was composed of fibers with a mean diameter of approximately 400 nm. The hybrid fibers were nano-sized with uniform patterns throughout the fibers, in contrast to the homogeneous structure of pure PCL fibers.
View Article and Find Full Text PDFA bioactive coating consisting of a silica xerogel/chitosan hybrid was applied to Ti at room temperature as a novel surface treatment for metallic implants. A crack-free thin layer (<2 microm) was coated on Ti with a chitosan content of >30 vol.% through a sol-gel process.
View Article and Find Full Text PDF