We propose a hydrogel immobilized with manganese porphyrin (MnP), a biomimetic superoxide dismutase (SOD), and catalase (CAT) to modulate reactive oxygen species (ROS) and hypoxia that impede the repair of large bone defects. Our hydrogel synthesis involved thiolated chitosan and polyethylene glycol-maleimide conjugated with MnPs (MnP-PEG-MAL), which enabled gelation via a click reaction. Through optimization, a hydrogel with mechanical properties and catalytic effects favorable for bone repair was selected.
View Article and Find Full Text PDFPurpose: Transscleral ocular iontophoresis has been proposed to deliver charged particulate drugs to ocular tissues effectively by transmitting a weak electrical current through the sclera. The electric fields formed are influenced by the electrode conditions, thus affecting the amount of particulate drugs delivered to the ocular tissues via iontophoresis. Computational simulation is widely used to simulate drug concentrations in the eye; therefore, reflecting the characteristics of the drugs in living tissues to the simulations is important for a more precise estimation of drug concentration.
View Article and Find Full Text PDFCancer recurrence and metastasis are major contributors to treatment failure following tumor resection surgery. We developed a novel implantable drug delivery system utilizing glycol chitosan to address these issues. Glycol chitosan is a natural adjuvant, inducing dendritic cell activation to promote T helper 1 cell immune responses, macrophage activation, and cytokine production.
View Article and Find Full Text PDFHealing chronic diabetic wounds is challenging because of excessive reactive oxygen species (ROS) and hypoxia in the wound microenvironment. To address this issue, we propose a hydrogel wound dressing composed of polyethylene glycol (PEG) cross-linked with a biomimetic catalase, Fe-containing porphyrin (FeP) (i.e.
View Article and Find Full Text PDFInflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a family of chronic disorders along the gastrointestinal tract. Because of its idiopathic nature, IBD does not have a fundamental cure; current available therapies for IBD are limited to prolonged doses of immunomodulatory agents. While these treatments may reduce inflammation, limited therapeutic efficacy, inconsistency across patients, and adverse side effects from aggressive medications remain as major drawbacks.
View Article and Find Full Text PDFAtopic dermatitis (AD) is a widespread, recurrent, and chronic inflammatory skin condition that imposes a major burden on patients. Conventional treatments, such as corticosteroids, are associated with various side effects, underscoring the need for innovative therapeutic approaches. In this study, the possibility of using indole-3-acetic acid-loaded layered double hydroxides (IAA-LDHs) is evaluated as a novel treatment for AD.
View Article and Find Full Text PDFBackground: Neutrophil extracellular traps (NETs) are observed in chronic rhinosinusitis (CRS), although their role remains unclear.
Objectives: This study aimed to investigate the influence of NETs on the CRS epithelium.
Methods: Forty-five sinonasal biopsy specimens were immunofluorescence-stained to identify NETs and p63 basal stem cells.
Particulate matter (PM) exposure disrupts the skin barrier, causing cutaneous inflammation that may eventually contribute to the development of various skin diseases. Herein, we introduce anti-inflammatory artificial extracellular vesicles (AEVs) fabricated through cell extrusion using the biosurfactant PEGylated mannosylerythritol lipid (P-MEL), hereafter named AEV. The P-MEL has anti-inflammatory abilities with demonstrated efficacy in inhibiting the secretion of pro-inflammatory mediators.
View Article and Find Full Text PDFA microneedle (MN) sensor coated with a sensing composite material was proposed for measuring glucose concentrations in interstitial fluid (ISF). The sensing composite material was prepared by blending a polymer containing glucose-responsive phenylboronic acid (PBA) moieties (i.e.
View Article and Find Full Text PDFCancer immunotherapy, which harnesses the power of the immune system, has shown immense promise in the fight against malignancies. Messenger RNA (mRNA) stands as a versatile instrument in this context, with its capacity to encode tumor-associated antigens (TAAs), immune cell receptors, cytokines, and antibodies. Nevertheless, the inherent structural instability of mRNA requires the development of effective delivery systems.
View Article and Find Full Text PDFPrompt administration of first-aid drugs can save lives during medical emergencies such as anaphylaxis and hypoglycemia. However, this is often performed by needle self-injection, which is not easy for patients under emergency conditions. Therefore, we propose an implantable device capable of on-demand administration of first-aid drugs (i.
View Article and Find Full Text PDFChemodynamic therapy (CDT) is based on the production of cytotoxic reactive oxygen species, such as hydroxyl radicals (OH). Thus, CDT can be advantageous when it is cancer-specific, in terms of efficacy and safety. Therefore, we propose NH-MIL-101(Fe), a Fe-containing metal-organic framework (MOF), as a carrier of Cu (copper)-chelating agent, d-penicillamine (d-pen; i.
View Article and Find Full Text PDFTissue Eng Regen Med
June 2023
Adoptive cell therapy with chimeric antigen receptor (CAR)-engineered T cells (CAR-Ts) has emerged as an innovative immunotherapy for hematological cancer treatment. However, the limited effect on solid tumors, complex processes, and excessive manufacturing costs remain as limitations of CAR-T therapy. Nanotechnology provides an alternative to the conventional CAR-T therapy.
View Article and Find Full Text PDFThe tumor microenvironment (TME) is a unique environment that is developed by the tumor and controlled by tumor-induced interactions with host cells during tumor progression. The TME includes immune cells, which can be classified into two types: tumor- antagonizing and tumor-promoting immune cells. Increasing the tumor treatment responses is associated with the tumor immune microenvironment.
View Article and Find Full Text PDFSelf-injectable therapy has several advantages in the treatment of metabolic disorders. However, frequent injections with needles impair patient compliance and medication adherence. Therefore, we develop a fully implantable device capable of on-demand administration of self-injection drugs via noninvasive manual button clicks on the outer skin.
View Article and Find Full Text PDFThe potential therapeutic implications of nitric oxide (NO) have drawn a great deal of interest for reversing multidrug resistance (MDR) in cancer; however, previous strategies utilized unstable or toxic NO donors often oxidized by the excessive addition of reactive oxygen species, leading to unexpected side effects. Therefore, this study proposed a metal-organic framework (MOF), Porous coordination network (PCN)-223-Fe, to be loaded with a biocompatible NO donor, L-arginine (L-arg; i.e.
View Article and Find Full Text PDFPatients with high-risk non-metastatic renal cell carcinoma (RCC) are at risk of metastatic relapse following nephrectomy. Cabozantinib (CZ), a potent multitarget tyrosine kinase inhibitor, interferes with angiogenesis and immunosuppression associated with surgery-induced metastasis. Here, we explored the therapeutic potential of CZ-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (CZ-PLGA-NPs) as an adjuvant strategy for targeting post-nephrectomy metastasis.
View Article and Find Full Text PDFCancer immunotherapy is a next-generation treatment strategy; however, its side effects limit its clinical translation. Here, a novel combination of a multi-functional nano-adjuvant (M-NA) prepared with an iron oxide/gold core and a cationic polymer shell via multilayer synthesis with CpG oligodeoxynucleotide (CpG-ODN) electrostatically complexed on its surface, and irreversible electroporation (IRE) technique was developed for effective image-guided in situ cancer vaccination. The M-NA can be retained long-term in the dense tumoral extracellular matrix after intratumoral injection and internalized by antigen-presenting cells (APCs).
View Article and Find Full Text PDFProlonged drug efficacy to reduce the number of administrations is a key factor in the successful treatment of glaucoma through topical drug delivery to the eye. Therefore, we propose a new strategy for iontophoretic ocular delivery of drug-loaded nanoparticles. Considering safety and convenience, our strategy is involved with topical administration of the drug-loaded nanoparticles followed by their permeation into the eye tissues via noninvasive iontophoresis, using the skin-attached electrodes.
View Article and Find Full Text PDFA bolus of human growth hormone (hGH) is often prescribed for the treatment of growth hormone deficiency, which requires frequent injections in current clinical settings. This painful needle-involved delivery often results in poor patient compliance, leading to low medication adherence and poor clinical outcomes. Therefore, we propose a magnetically actuating implantable pump (MAP) that can infuse an accurate dose of hGH only at the time of non-invasive magnet application from the skin.
View Article and Find Full Text PDFRNA therapeutics, including messenger RNA (mRNA) and small interfering RNA (siRNA), are genetic materials that mediate the translation of genetic direction from genes to induce or inhibit specific protein production. Although the interest in RNA therapeutics is rising globally, the absence of an effective delivery system is an obstacle to the clinical application of RNA therapeutics. Additionally, immunogenicity, short duration of protein expression, unwanted enzymatic degradation, and insufficient cellular uptake could limit the therapeutic efficacy of RNA therapeutics.
View Article and Find Full Text PDFInflammatory bowel diseases (IBDs) are idiopathic gastrointestinal inflammatory disorders featuring chronic intestinal inflammation. Although IBDs are increasingly becoming globally prevalent, the exact etiology of IBD remains obscure. Recently, the ability of various drugs for mucosal healing such as corticosteroids, antibiotics, and immunosuppressants has been proven.
View Article and Find Full Text PDFFor the prolonged, controlled delivery of systemic drugs, we propose an implantable drug-delivery chip (DDC) embedded with pairs of a microchannel and drug-reservoir serving as a drug diffusion barrier and depot, respectively. We pursued a DDC for dual drugs: a main-purpose drug, diclofenac (DF), for systemic exposure, and an antifibrotic drug, tranilast (TR), for local delivery. Thus, the problematic fibrotic tissue formation around the implanted device could be diminished, thereby less hindrance in systemic exposure of DF released from the DDC.
View Article and Find Full Text PDFImmune cells are attractive targets for therapy as they are direct participants in a variety of diseases. Delivering a therapeutic agent only to cells that act on a disease by distinguishing them from other cells has the advantage of concentrating the therapeutic effect and lowering systemic side effects. Distinguishing each immune cell from other immune cells to deliver substances, including drugs and genes, can be achieved using nanotechnology.
View Article and Find Full Text PDF