Cynomolgus monkeys, due to their close anatomical, genetic and physiological similarity to humans, have been employed as a popular laboratory non-human primate model over rodents. Primate animal induced pluripotent stem cell (iPSC) have been used to aid on the investigation of autologous regenerative therapies. Here, we reprogrammed cynomolgus monkey ear skin fibroblasts (cmESFs) into iPSCs as a starting material for autologous based study.
View Article and Find Full Text PDFCynomolgus monkeys, a non-human primate species, are genetically and physiologically similar to humans; hence, they have been employed as an ideal developmental and biomedical model. Non-human primate animals and their induced pluripotent stem cell (iPSC) derivatives have been used as a research tool to investigate autologous regenerative medicine. Here, we reprogrammed cynomolgus monkey kidney fibroblasts (cmKFs) as a control for animal iPSCs and to study autologous transplant.
View Article and Find Full Text PDFBackground: Alternative splicing (AS) generates various transcripts from a single gene and thus plays a significant role in transcriptomic diversity and proteomic complexity. Alu elements are primate-specific transposable elements (TEs) and can provide a donor or acceptor site for AS. In a study on TE-mediated AS, we recently identified a novel AluSz6-exonized ACTR8 transcript of the crab-eating monkey (Macaca fascicularis).
View Article and Find Full Text PDFBackground: The BLOC1S2 gene encodes the multifunctional protein BLOS2, a shared subunit of two lysosomal trafficking complexes: i) biogenesis of lysosome-related organelles complex-1 and i) BLOC-1-related complex. In our previous study, we identified an intriguing unreported transcript of the BLOC1S2 gene that has a novel exon derived from two transposable elements (TEs), MIR and AluSp. To investigate the evolutionary footprint and molecular mechanism of action of this transcript, we performed PCR and RT-PCR experiments and sequencing analyses using genomic DNA and RNA samples from humans and various non-human primates.
View Article and Find Full Text PDFBackground: The characterization of genomic or epigenomic variation in human and animal models could provide important insight into pathophysiological mechanisms of various diseases, and lead to new developments in disease diagnosis and clinical intervention. The African green monkey (AGM; Chlorocebus aethiops) and cynomolgus monkey (CM; Macaca fascicularis) have long been considered important animal models in biomedical research. However, non-human primate-specific methods applicable to epigenomic analyses in AGM and CM are lacking.
View Article and Find Full Text PDFTyrosinase is a copper-containing enzyme that regulates melanin biosynthesis and is encoded by the tyrosinase (TYR) gene. Previous studies demonstrated that mutations in TYR could lead to oculocutaneous albinism type 1 (OCA1) owing to the failure of melanin formation. Although a previous study found that albinism in the rhesus monkey was derived from a mutation in TYR, the identification and characterization of this gene in non-human primates has not been achieved thus far.
View Article and Find Full Text PDFCathepsin F, which is encoded by , is a cysteine proteinase ubiquitously expressed in several tissues. In a previous study, novel transcripts of the gene were identified in the crab-eating monkey deriving from the integration of an element-YRa1. The occurrence of YRa1-derived alternative transcripts and the mechanism of exonization events in the gene of human, rhesus monkey, and crab-eating monkey were investigated using PCR and reverse transcription PCR on the genomic DNA and cDNA isolated from several tissues.
View Article and Find Full Text PDFencodes a subunit of the tRNA-splicing endonuclease complex, which catalyzes the identification and cleavage of introns from precursor tRNAs. Previously, we identified an -derived alternative transcript in of cynomolgus monkey. Reverse transcription-polymerase chain reaction (RT-PCR) amplification and sequence analysis of primate and human samples identified five novel alternative transcripts, including the exonized transcript.
View Article and Find Full Text PDFZKSCAN5 (also known as ZFP95) is a zinc-finger protein belonging to the Krűppel family. ZKSCAN5 contains a SCAN box and a KRAB A domain and is proposed to play a distinct role during spermatogenesis. In humans, alternatively spliced ZKSCAN5 transcripts with different 5'-untranslated regions (UTRs) have been identified.
View Article and Find Full Text PDFBCS1L gene encodes mitochondrial protein and is a member of conserved AAA protein family. This gene is involved in the incorporation of Rieske FeS and Qcr10p into complex III of respiratory chain. In our previous study, AluYRa2-derived alternative transcript in rhesus monkey genome was identified.
View Article and Find Full Text PDFThe accumulation and aggregation of misfolded proteins in the brain, such as amyloid-β (Aβ) and hyperphosphorylated tau, is a neuropathological hallmark of Alzheimer's disease (AD). Previously, we developed and validated a novel non-human primate model for sporadic AD (sAD) research using intracerebroventricular administration of streptozotocin (icv STZ). To date, no characterization of AD-related genes in different brain regions has been performed.
View Article and Find Full Text PDF