In the mammalian brain, neurogenesis is maintained throughout adulthood primarily in two typical niches, the subgranular zone (SGZ) of the dentate gyrus and the subventricular zone (SVZ) of the lateral ventricles and in other nonclassic neurogenic areas (e.g., the amygdala and striatum).
View Article and Find Full Text PDFTransplantation of differentiated neurons derived from either human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs) is an emerging therapeutic strategy for various neurodegenerative diseases. One important aspect of transplantation is the accessibility to track and control the activity of the stem cells-derived neurons post-transplantation. Recently, the characteristics of organic nanoparticles (NPs) with aggregation-induced emission (AIE) have emerged as efficient cell labeling reagents, where positive outcomes were observed in long-term cancer cell tracing in vivo.
View Article and Find Full Text PDFCurative therapies or treatments reversing the progression of Parkinson's disease (PD) have attracted considerable interest in the last few decades. PD is characterized by the gradual loss of dopaminergic (DA) neurons and decreased striatal dopamine levels. Current challenges include optimizing neuroprotective strategies, developing personalized drug therapy, and minimizing side effects from the long-term prescription of pharmacological drugs used to relieve short-term motor symptoms.
View Article and Find Full Text PDFThe amyloid precursor protein (APP) intracellular domain (AICD) is a metabolic by-product of APP produced through sequential proteolytic cleavage by α-, β-, and γ-secretases. The interaction between AICD and Fe65 has been reported to impair adult neurogenesis in vivo. However, the exact role of AICD in mediating neural stem cell fate remains unclear.
View Article and Find Full Text PDFIncreasing evidence indicates superiority of three-dimensional (3D) in vitro cell culture systems over conventional two-dimensional (2D) monolayer cultures in mimicking native in vivo microenvironments. Tissue-engineered 3D culture models combined with stem cell technologies have advanced Alzheimer's disease (AD) pathogenesis studies. However, existing 3D neuronal models of AD overexpress mutant genes or have heterogeneities in composition, biological properties and cell differentiation stages.
View Article and Find Full Text PDFSchizophrenia has been associated with a range of genetic and environmental risk factors. Here we explored a link between two risk factors that converge on a shared neurobiological pathway. Recent genome-wide association studies (GWAS) have identified risk variants in genes that code for L-type voltage-gated calcium channels (L-VGCCs), while epidemiological studies have found an increased risk of schizophrenia in those with neonatal vitamin D deficiency.
View Article and Find Full Text PDFClues from the epidemiology of schizophrenia, such as the increased risk in those born in winter/spring, have led to the hypothesis that prenatal vitamin D deficiency may increase the risk of later schizophrenia. We wish to explore this hypothesis in a large Danish case-control study (n = 2602). The concentration of 25 hydroxyvitamin D (25OHD) was assessed from neonatal dried blood samples.
View Article and Find Full Text PDFThe molecular mechanisms underlying plastic changes in the strength and connectivity of excitatory synapses have been studied extensively for the past few decades and remain the most attractive cellular models of learning and memory. One of the major mechanisms that regulate synaptic plasticity is the dynamic adjustment of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor content on the neuronal plasma membrane. The expression of surface AMPA receptors (AMPARs) is controlled by the delicate balance between the biosynthesis, dendritic transport, exocytosis, endocytosis, recycling and degradation of the receptors.
View Article and Find Full Text PDFAlzheimer's disease is characterized by cognitive decline, neuronal degeneration, and the accumulation of amyloid-beta (Aβ). Although, the neurotoxic Aβ peptide is widely believed to trigger neuronal dysfunction and degeneration in Alzheimer's disease, the mechanism by which this occurs is poorly defined. Here we describe a novel, Aβ-triggered apoptotic pathway in which Aβ treatment leads to the upregulation of G-protein activated inwardly rectifying potassium (GIRK/Kir3) channels, causing potassium efflux from neurons and Aβ-mediated apoptosis.
View Article and Find Full Text PDFThe accumulation of soluble amyloid-β (Aβ) peptides produces profound neuronal changes in the brain during the pathogenesis of Alzheimer's disease. Excessive levels of Aβ disrupt excitatory synaptic transmission by promoting the removal of synaptic AMPA receptors (AMPARs), dendritic spine loss, and synaptic depression. Recently, activity-dependent ubiquitination of the GluA1 subunit has been shown to regulate the intracellular sorting of AMPARs toward late endosomes for degradation.
View Article and Find Full Text PDFDynamic trafficking of AMPA receptors (AMPARs) into and out of synapses plays an important role in synaptic plasticity. We previously reported that the protein kinase C and casein kinase II substrate in neurons (PACSIN) forms a complex with AMPARs through its interaction with the protein interacting with C-kinase 1 (PICK1) to regulate NMDA receptor (NMDAR)-induced AMPAR endocytosis and cerebellar long-term depression. However, the molecular mechanism by which PACSIN regulates the dynamics of AMPAR trafficking remains unclear.
View Article and Find Full Text PDF